171-24181

STUDY OF AEROSPACE STRUCTURAL MANUFACTURING CONCEPTS

VOLUME 2 OF 3

MANUFACTURING LINE MODEL DESCRIPTIONS, ANALYSES, AND RESULTS

15 MARCH 1971

PREPARED FOR:

National Aeronautics and Space Administration
Office of Advanced Research and Technology
Contract NAS2-5857

BY
APOLLO SYSTEMS • SPACE DIVISION
GENERAL ELECTRIC COMPANY
DAYTONA BEACH, FLORIDA

STUDY OF AEROSPACE STRUCTURAL MANUFACTURING CONCEPTS

VOLUME 2 OF 3

MANUFACTURING LINE MODEL DESCRIPTIONS, ANALYSES, AND RESULTS

15 March 1971

Prepared for:

National Aeronautics and Space Administration Office of Advanced Research and Technology Contract NAS2-5857

 $\mathbf{B}\mathbf{y}$

Apollo Systems • Space Division General Electric Company Daytona Beach, Florida

TABLE OF CONTENTS

Paragraph	Title	Page
	FOREWORD	ix
	SUMMARY	х
MANU	FACTURING ACRONYMS/ABBREVIATIONS	xii
	SECTION 1—INTRODUCTION	
1.1 BACKGROUND		1-1
	SECTION 2—STUDY APPROACH	
2.1 INTRODUCTION		2-1
2.2 SCOPE		2-2
2.2.1 STRUCTURAL F	ELEMENTS SELECTED FOR DETAILED STUDY	2-2
2.2.2 ASSUMPTIONS		2-8
2.2.3 STUDY VARIAB	LES	2-8
SEC	CTION 3—RESULTS AND CONCLUSIONS	
3.1 INTRODUCTION		3-1
3.2 DISCUSSION OF OV PROGRAM VARIAB	VERALL COST DISTRIBUTION AND	3-1
3.2.1 OVERALL COST	DISTRIBUTION	3-1
3.2.2 TYPE OF STRU	CTURE	3-12
3.2.3 RATE OF PROD	UCTION	3-12
3.2.4 QUANTITY PRO	DUCED	3-12
3.2.5 MANUFACTURI	NG TECHNOLOGY DIFFERENCES	3-13
3.2.6 NONRECURRING	G COST ELEMENTS	3-14
3.2.7 RECURRING CO	ST ELEMENTS	3-14
3.2.8 PLANT LOCATI	ON	3-14
3.2.9 LEARNING CUR	VES	3-15

TABLE OF CONTENTS (Continued)

Paragra	aph <u>Title</u>	Page
3.2.10	DETAILS OF FABRICATION AND INSPECTION	3-15
3.2.11	DEPRECIATION METHODS, TAXES AND INTEREST	3-16
3.3 C	OST GROUPING	3-19
3.4 R	ANKING AND OVERALL INTERACTION ANALYSES	3-26
3.4.1	IMPACT OF CHANGES ON PROGRAM COST	3-26
3.4.2	SUMMARY OF OVERALL VARIATION IN MANUFACTURING COST	3-30
3.4.3	INTERACTIONS OF RESULTS	3-34
3.5 C	ONCLUSIONS AND RECOMMENDATIONS	3-41
	SECTION 4—MANUFACTURING COMPUTER MODEL	
4.1 M	ETHODOLOGY	4-1
4.1.1	MODEL REQUIREMENTS	4-1
4.1.2	MODEL SELECTION	4-3
4.2 M	ANUFACTURING COMPUTER MODEL DESCRIPTION	4-4
4.2.1	SUMMARY	4-4
4.2.2	INPUT/OUTPUT	4-4
4.2.3	MATH MODEL	4-5
4.2.4	FLOW DIAGRAM	4-7
4.2.5	EXAMPLE OF OPERATION	4-7
	SECTION 5—IDENTIFICATION OF MANUFACTURING LINES AND POTENTIAL AREAS FOR IMPROVEMENT	
5.1 D	ESCRIPTION, STATE OF THE ART MANUFACTURING LINE, LINE 1	5-1
5.1.1	PROPELLANT TANK STRUCTURE, ELEMENT NO. 2	5-1
5.1.2	SUPPORT FRUSTUM STRUCTURE, ELEMENT NO. 1	5-25
5.2 A	NALYSIS OF STATE-OF-THE-ART MANUFACTURING LINE, LINE 1	5-34
5.3 D	ESCRIPTION, IMPROVED MANUFACTURING LINE, LINE 2	5-38
5.3.1	PROPELLANT TANK STRUCTURE (ELEMENT 2)	5-38
5.3.2	SUPPORT FRUSTUM STRUCTURE (ELEMENT 1)	5-55
5.4 D	ESCRIPTION, ADVANCED MANUFACTURING LINE, LINE 3	5-56
5.4.1	PROPELLANT TANK STRUCTURE (ELEMENT 2)	5-56
5.4.2	SUPPORT FRUSTUM STRUCTURE (ELEMENT 1)	5-63
5.5 M	ANUFACTURING LINE DIFFERENCES	5-76

TABLE OF CONTENTS (Continued)

<u>Paragraph</u> <u>Title</u> <u>I</u>	Page
SECTION 6—INTERACTION ANALYSIS	
6.1 INTRODUCTION	6-1
6.2 QUANTITATIVE INTERACTIONS STUDY	6-2
6.2.1 METHODS	6-2
6.2.2 MULTIPLE REGRESSION	6-2
6.2.3 FACTORIAL DESIGN DATA	6-6
6.2.4 FACTORIAL DESIGN ANALYSIS	6-7
6.3 SUMMARY OF QUANTITATIVE INTERACTIONS STUDY	6-20
6.4 QUALITATIVE INTERACTION STUDY	6-20
SECTION 7—REFERENCES	7-1
APPENDIX A—MANUFACTURING COST ANALYSIS (MANCAN) PROGRAM LISTING	A-1
APPENDIX B-LISTING OF COMPUTER OUTPUTS (BY RUN NUMBER) USED IN DETERMINING THE IMPACT OF CHANGES TO FACTORS ON MANUFACTURING COST	R_1

LIST OF ILLUSTRATIONS

Figure	<u>Title</u>	Page
2-1	Work Flow Plan	2-3
2-2	Support Frustum Structure (Structural Element No. 1)	2-5
2-3	Propellant Tank Structure (Structural Element No. 2)	2-6
3-1	Manufacturing Cost Distribution for the Support Frustum Structure (Element No. 1) and 2 Per Year Production for 5 Years	3-3
3-2	Manufacturing Cost Distribution for the Support Frustum Structure (Element No. 1) and 20 Per Year Production for 5 Years	3-4
3-3	Manufacturing Cost Distribution for the Propellant Tank Structure (Element No. 2) and 2 Per Year Production for 5 Years	3-5
3-4	Manufacturing Cost Distribution for the Propellant Tank Structure (Element No. 2) and 20 Per Year Production for 5 Years	3-6
3-5	Cost Distribution for the State-of-the-Art Manufacturing Lines (Line 1) Including 100 Percent Depreciation Method	3-17
3-6	Cost Distribution for the State-of-the-Art Manufacturing Line (Line 1) Including Straight Line Depreciation Method	3-18
3-7	Impact of Factor Changes on Manufacturing Costs	3-27
3-8	Ranges of Impact of Manufacturing Technology Improvement in Changing From Line Number 1 to Line Number 3	3-31
3-9	Ranges of Impact of Major Factors on Unit Manufacturing Costs	3-33
3-10	Unit Cost Versus Quantity for Element No. 1 at a Production Rate of 2 Per Year	3-35
3-11	Unit Cost Versus Quantity for Element No. 1 at a Production Rate of 20 Per Year	3-36
3-12	Unit Cost Versus Quantity for Element No. 2 at a Production Rate of 2 Per Year	3-37
3-13	Unit Cost Versus Quantity for Element No. 2 at a Production Rate of 20 Per Year	3-38
3-14	Cost Impact of Quantity for Various Change for Element No. 1	3-39
3-15	Cost Impact of Quantity for Various Changes for Element No. 2	3-40
4-1	Manufacturing Model	4-2
4-2	Input/Output of the Manufacturing Cost Analysis Program (MANCAN)	4-5
4-3	Flow Diagram of MANCAN Program	4-9
4-4	MANCAN Program Operation	4-11
4-5	MANCAN Output Corresponding to Input Given in Figure 4-4.	4-13

LIST OF ILLUSTRATIONS (Continued)

Figure	<u>Title</u>	Page
5-1	Typical Manufacturing Flow Diagram (Large L/V Liquid Hydrogen and Oxygen Tank)	5-3
5-2	Manufacturing Processes for Propellant Tank Structure (Element 2) State-of-the-Art Manufacturing Line (Line 1)	5-5
5-3	Typical Manufacturing Flow Diagram—Support Frustum Structure	5-27
5-4	Representative Facilities to Produce Support Frustum Structures	5-32
5-5	Office Area and Factory Space Allocation—Support Frustum (Element 1)	5-33
6-1	Complexity of Manufacturing Processes	6-3
6-2	The 2 ³ Factorial Design Array	6-13
6-3	Results of 2 ⁷ Factorial Design Averages	6-21
6-4	Interaction Matrix of Factors Influencing Manufacturing Cost	6-22
6-5	Significant Manufacturing/Management Factors Interactions Matrix	6-25
B-1	Change Identification	B-2
B-2	Cost Group Identification	B-3

LIST OF TABLES

Table	<u>Title</u>	Page
1	Sources of Manufacturing Data	
2-1	Summary of Study Activities	2-4
2-2	Manufacturing Cost Assumptions	2-9
2-3	Study Variables	2-10
3-1	Grouping of Like Activities Into Identifiable Cost Groups	3-2
3-2	Unit Manufacturing Cost—K\$/Unit	3-7
3-3	Manufacturing Cost Distribution for Element No. 1 and a Product Capability of 2 Per Year—5 Year Program	3-8
3-4	Manufacturing Cost Distribution for Element No. 1 and a Product Capability of 20 Per Year—5 Year Program	3-9
3-5	Manufacturing Cost Distribution for Element No. 2 and a Product Capability of 2 Per Year—5 Year Program	3-10
3-6	Manufacturing Cost Distribution for Element No. 2 and a Product Capability of 20 Per Year—5 Year Program	3-11
3-7	Increased Value in K\$ for Payload Increase Associated With Technology Improvements from Line No. 1 to Line No. 3	3-13
3-8	Distribution of Cost by Cost Group for the Support Frustum Structure (Element No. 1) Rate = 2 Per Year, Program Length = 5 Years	3-20
3-9	Distribution of Cost by Cost Group for the Support Frustum Structure (Element No. 1) Rate = 20 Per Year, Program Length = 5 Years	3-21
3-10	Distribution of Cost by Cost Group for the Propellant Tank Structure (Element No. 2) Rate = 2 Per Year, Program Length = 5 Years	3-22
3-11	Distribution of Cost by Cost Group for the Propellant Tank Structure (Element No. 2) Rate = 20 Per Year,	
0.10	Program Length = 5 Years	3-23
3-12	Support Frustum Structure (Element No. 1) Cost Distribution	3-24
3-13	Propellant Tank Structure (Element 2) Cost Distribution	3-25
3-14	Change Impact Study State of the Art Manufacturing Line (Based Upon Production Rate of 20 Elements/Year—5 Year Production Program—100 Elements)	3-29
3-15	Relative Ranking of Selected Changes to the Basic Line	3-30
4-1	MANCAN Operating Files	4-7

LIST OF TABLES (Continued)

<u>Table</u>	<u>Title</u>	Page
4-2	MANCAN Files (Words in Matrix Indicate Names of Files Called During the Operation of MANCAN)	4-8
5-1	Propellant Tank Structure	5-8
5-2	Propellant Tank Structure (Element 2) and State-of-the-Art (Line 1) Manufacturing Plant (Low Bay - 30-Foot) Floor Areas	5-13
5-3	Propellant Tank Structure (Element 2) and State-of-the-Art (Line 1) Assembly Plant (High Bay - 100-Foot) Floor Areas	5-14
5-4	Land Acquisition and Building Construction Requirements/Cost Propellant Tank Structure (Element 2) and State-of-the-Art Manufacturing Line (Line 1) Plant No. 1—Manufacturing (Low Bay - 30 Feet)	5-15
5-5	Land Acquisition and Building Construction Requirements/Cost Propellant Tank Structure (Element 2) and State-of-the-Art Manufacturing Line (Line 1) Plant No. 2—Assembly (High Bay Type - 100 Feet)	5-16
5-6	Shipping Container Cost, Propellant Tank Structure (Element No. 2)	5-17
5-7	Transportation Cost Summary—Leased Mover Plant No. 1 to Plant No. 2 One Way Distance - 100 Miles Propellant Tank Structure (Element 2)	5-18
5-8	Near-Term Pre-Manufacturing Operations for Propellant Tank Structure (Element 2) State-of-the-Art Manufacturing Line (Line 1)	5-19
5-9	Manufacturing Cost Analysis	5-21
5-10	Manufacturing Cost Analysis	5-23
5-11	Manufacturing Cost Analysis, 2 Per Year, Line 1, Element 1	5-29
5-12	Manufacturing Cost Analysis, 20 Per Year, Line 1, Element 1	5-30
5-13	Representative Problem Areas (Areas for Potential Improvement) Line 1 Problem Area (Structural Element 2)	5-34
5-14	Manufacturing Processes for Propellant Tank Structure (Element 2) Improved Manufacturing Line (Line 2)	5-39
5-15	Propellant Tank Structure (Element 2)	5-44
5-16	Manufacturing and Assembly Plant Floor Areas	5-49
5-17	Land Acquisition and Building Construction Requirements/Cost Propellant Tank Structure, Element 2 Improved Manufacturing Line (Line 2) Manufacturing and Assembly Plant (Consolidated)	5-50
5-18	Manufacturing Cost Analysis	5-50 5-51
5-19	Manufacturing Cost Analysis	5-51
5-20	Manufacturing Cost Analysis, 2 Per Year, Line 2, Element 1	5-57
~		~ ~ ;

LIST OF TABLES (Continued)

<u>Table</u>	Title	Page
5-21	Manufacturing Cost Analysis	5-58
5-22	Manufacturing Processes for Propellant Tank Structure (Element 2) Advanced Manufacturing Line (Line 3)	5-59
5-23	Propellant Tank Structure (Element 2)	5-64
5-24	Manufacturing Cost Analysis	5-69
5-25	Manufacturing Cost Analysis	5-71
5-26	Manufacturing Cost Analysis, 2 Per Year, Line 3, Element 1	5-74
5-27	Manufacturing Cost Analysis, 20 Per Year, Line 3, Element 1	5-75
5 -2 8	Structures Element No. 1, Manufacturing Line Differences	5-77
5-29	Structures Element No. 2, Manufacturing Line Differences	5-78
6-1	Cost Equation Factors	6-7
6-2	Data for (2) ⁷ Factorial Design	6-8
6-3	Selected Two-Level Values for Variables	6-11
6-4	Notations for a 2 ³ Factorial Design	6-11
6-5	Results for the 2 ³ Example in Figure 6-2	6-12
6-6	Results of (2) ⁷ Factorial Design Analysis	6-15
6-7	Elements 1 and 2-20 Per Year Values as Percent of Nominal	6-18
B-1	Listing of Computer Outputs	B-4

FOREWORD

This report presents the results of a Study of Technology Requirements for Structures of Aerospace Vehicles. This study was performed for the National Aeronautics and Space Administration under Contract NAS2-5857, monitored by Mr. Kenji Nishioka and Mr. Harry Hornby of the Advanced Concepts and Missions Division of the Office of Advanced Research and Technology.

We wish to acknowledge the many organizations and individuals who provided us with data pertinent to this study. A list of these organizations and individuals is included at the end of Volume 3.

SUMMARY

This report describes the activities of a three phase study of the economics of aerospace structural manufacturing. The study is devoted primarily to the examination of the technology areas pertinent to conventional (aluminum) aerospace manufacturing. Two representative structures are used in a systems analysis of the impact of technology and program factors on manufacturing. The initial manufacturing lines are defined using today's state-of-the-art procedures and costs. Facilities, tooling, premanufacturing operations, materials, manufacturing and quality control labor are indicated. Improvements in overall operations and manufacturing technology are introduced to define improved and advanced manufacturing lines.

A computer model was developed for accumulating and manipulating manufacturing data and costs and is described in detail. This program, together with those factors and technologies identified with improved manufacturing processes, has been used to assess the impact on cost and worth.

The five major areas of investigation and primary sources of data in these areas are summarized in Table 1. Information related to the manufacturing technologies has been derived primarily from Government and industry sources typified by Saturn/Apollo structural manufacturing experience.

Results for representative structures indicate that the recurring part of the manufacturing processes cost is not the major portion of the total manufacturing cost. In general it has been shown that for the manufacture of a propellant tank the facilities, tooling and other nonrecurring costs represent from one-half to three-fourths of the total manufacturing cost. This result, therefore, isolates an area which should receive further attention in future studies for significant cost saving potential.

No single factor has a more significant impact on cost than the quantity of like elements produced. For example, with a production capability of 20 elements per year, the manufacturing cost of each element when producing 100 is less than 7 percent of the cost of producing one element. This result reflects the effect of spreading the non-recurring costs over a larger base.

Table 1 Sources of Manufacturing Data

Area of Investigation	Primary Sources of Data for This Study
Pre-Manufacturing Technologies	MSFC, Grumman, North American Rockwell, McDonnell Douglas Astronautics Co., GE/ RESD, GE/AS
Manufacturing Technologies Metal Removal Metal Forming Assembly & Other	MSFC, Air Force Manufacturing Lab, Battelle, Grumman, North American Rockwell; GE/RESD, GE/AS, GE/Jet Engine, GE/Manufacturing Services; McDonnell Douglas Astronautics Co., plus 26 Subcontractors
Quality Control & Test Technologies	MSFC, GE/RESD, GE/AS, North American Rockwell, McDonnell Douglas Astronautics Co., Grumman
Factors Affecting Manufacturing	MSFC, GE/RESD, GE/AS, Grumman, North American Rockwell, Air Force Manufacturing Lab, Univ. of Florida (Dr. Burns), Batelle, GE/Manufacturing Services, McDonnel Douglas Astronautics Co.
Plant Facilities	MSFC, GE/RESD, GE/AS, Grumman, North American Rockwell, GE/Manufacturing Ser- vices, McDonnell Douglas Astronautics Co., Grumman

MANUFACTURING ACRONYMS/ABBREVIATIONS

Acronym/Abbreviation	Description
White the Anniche and Company and the Annie and the Annie and the Annie and the Annie and Annie	And
+ A/A	Assembly Area
A/A A/D	Aft Dome
A/F	Assembly Facility
ASSY	
BLK	Assembly Blank
C/B	Common Bulkhead
C/B	
·	Center Cap Chemical
CHEM	
CK	Check
CLN	Clean
CYL	Cylinder
DYE-PEN	Dye-Penetrant
EXTER	External
F/D	Forward Dome
FWD	Forward
INSP	Inspection
INSTL	Install
INTER	Internal
L/T	LOX Tank
${f LD}$	Load
LK	Leak
LOX	Liquid Oxygen
${\tt MTL}$	Material
OPNG	Opening
PKG	Package
REQ	Required
S/B	Spreader Bar
SEG	Segment
SHIP	Shipping
STA	Station
TRNSPR	Transporter
U/I	Ultrasonic Inspect
WGH	Weigh

SECTION 1

INTRODUCTION

1.1 BACKGROUND

Previous studies have shown that significant reductions in structural weight can be achieved with the use of advanced materials in future large launch vehicles. General Electric Company, under contract, NAS2-3811⁽⁷⁾, has shown that structural weight reductions of 60 to 70 percent can be realized in large launch vehicles with the substitution of materials such as beryllium or boron/epoxy honeycomb for the conventional aluminum integrally stiffened skin construction. This weight reduction is significant in improving launch vehicle performance. Technological areas, proven to be of interest in the above study for future large launch vehicles, were evaluated parametrically by the General Electric Company, under contract NAS2-5047, for technical feasibility and economic characteristics⁽¹⁾.

This study is essentially a continuation of the above studies and is a broad investigation of the manufacturing technology of aluminum aerospace structural systems to identify the significant manufacturing factors influencing overall structural system manufacturing cost. Results from the study are necessary to provide a manufacturing system cost baseline and cost analysis tools and techniques along with the identification of potential areas for cost reduction. This baseline will serve as the foundation upon which to develop cost indices and reductions for future aerospace programs utilizing advanced materials and related manufacturing technologies.

Other studies presently in progress and/or completed for the NASA Office of Advanced Research and Technology complement this study. Boeing Aircraft performed a detailed cost study of large launch vehicles which provides a range of payload capability under contract NAS2-5056, "Cost Studies of Multipurpose Large Launch Vehicles." McDonnell-Douglas Aircraft Corporation developed a cost model and performed cost studies of spacecraft under contract NAS2-5022, "Study of Optimized Cost/Performance Design Methodology for Orbital Transportation Systems." North American-Rockwell has studied the costs of a spectrum of launch vehicles from performance and cost viewpoints under contract NAS7-368, "Influence of Structure and Material Research on Advanced Launch Systems' Weight, Performance and Cost."

The successful achievement of larger launch vehicles such as Saturn IB, Saturn V, and Titan III has not brought the expected reduction in costs of launch vehicles. Instead, these multi-billion dollar launch vehicle developments have produced launch vehicles of unprecedented success and reliability. The importance of achieving safe and successful flights has dominated the development cycle; launch vehicle costs remain at the \$500 per pound to \$1000 per pound level.

To achieve desired costs for vehicles, all systems of the launch vehicles should be designed on an optimized cost/performance basis. This study explored structural manufacturing since it represents a large portion of the launch vehicle costs and a wealth of background data could be assembled for evaluation.

Unlike other studies, this study's objective is to take a broader look at manufacturing costs—particularly from the context of a total program environment. Other earlier studies (e.g., References 9, 10) have covered particular constructions and the costs for various methods of fabrication. This study seeks to develop the comparative manufacturing costs of representative structures within the total framework of a typical space program. Where possible, impact of program—wide factors, such as safety, reliability, configuration control, program phasing, tolerance control, quality control, etc., have been considered. The enormity of this undertaking is evident from the size of such programs—as in the case of Apollo which cost billions of dollars and employed hundreds of thousands of workers. To achieve this goal, representative structures have been identified and their manufacturing lines described by using a computer model which makes it possible to consider the impact of advancements in technology and changing program factors. In this manner, the study team has been able to discern where potential future cost reductions may be available from a total program viewpoint.

The performance of this study has been assisted by numerous individuals from several departments within the General Electric Company. The following individuals were principal contributors to this study:

N. E. Munch
 General Electric Apollo Systems
 R. B. Bradshaw
 General Electric Apollo Systems
 Dr. E. Mangrum
 General Electric Apollo Systems
 E. W. Pittner
 General Electric Re-Entry Systems

In addition, Dr. J. J. Burns of the University of Florida served as a consultant.

SECTION 2

STUDY APPROACH

2.1 INTRODUCTION

This study was divided into three phases spanning a nine-month period plus an additional three months for report preparation.

As illustrated in Figure 2-1, Phase I, was performed during a two-month period and consisted of three major elements: (1) acquisition of manufacturing data, (2) manufacturing technology status review, and (3) investigation of the interrelation of manufacturing parameters and system factors, such as program management, engineering, and design. In addition, supporting studies were performed in the areas of the specific disciplines related to manufacturing procedures, techniques, cost, and fabrication line modeling.

Phase II of this study was performed in four months and has included the detailed investigation of representative manufacturing baselines for two aerospace structures. After selection of two representative structures, manufacturing analyses were made to document the details of the tooling, facilities, and manufacturing for two production rates. Impact of manufacturing technologies were investigated through a detailed study of the impact of changing technologies and factors on these manufacturing lines. Changes in manufacturing line configuration, tooling, facilities, and processes were observed as the technologies, designs, and factors were varied. Descriptions of the lines obtained for each of the major steps of this evaluation are included in this report. Results of the economic analyses of the impact of these factors and technologies are given in later sections of this report.

A computerized mathematical model was developed to aid in this study and is in itself one of the significant products of this investigation. This model is programmed to describe the details of the basic manufacturing lines, as well as those lines which include potential recognized improvements. Program factors and constraints influencing manufacturing have been included to allow rapid calculation of the impact of these factors on manufacturing cost during Phase II of this study. While developed for specific representative structures, this type of computer program should have application

in the future for analysis of impact of program factors and constraints on any manufacturing line. Descriptions of this program are included in Section 4 and Appendix A.

Phase III activities spanned a three-month period. During this period, the manufacturing lines and technology, defined in Phase II, were evaluated for cost and worth. Promising areas for future study were identified. Figure 2-1 depicts those work elements considered to accomplish this objective during Phase III. After establishing criteria for rating technology differences, a cost analysis was performed for all manufacturing lines, both manufacturing rates, and both structural elements. An interaction analysis was performed to determine the sensitivity of these costs to other system factors. The remainder of Phase III entailed the relative evaluation of these analyses and a final selection of technology areas worthy of future study.

The computer program developed and tested in Phase II was exercised, utilizing inputs representing variations in both manufacturing and other system factors. For each distinct set of input data which defines the structure to be manufactured and the constraints under which this process is to be completed, cost calculations were performed at the "element" level for all feasible identified manufacturing alternatives. The determination of the cost distribution including both recurring and nonrecurring cost associated with each of the three manufacturing lines for elements 1 and 2 was completed. The costs include all costs normally incurred during manufacturing and are in sufficient detail to permit meaningful cost comparisons between lines 1, 2 and 3.

Table 2-1 summarizes the approach and activities for the total study.

2.2 SCOPE

2.2.1 STRUCTURAL ELEMENTS SELECTED FOR DETAILED STUDY

At the conclusion of Phase I, the two separate structural elements shown in Figures 2-2 and 2-3, were selected for detail study in Phases II and III. These structural elements were selected because current manufacturing technologies and related cost could be established for the predetermined production rates of 2 and 20 per year for total programs up to five years in length.

The first structural element selected, Figure 2-2, was the Support Frustum, similar to the MARK XII frustum manufactured by the General Electric Company.

Figure 2-1. Work Flow Plan

Table 2-1

Summary of Study Activities

Phase I—Survey of Manufacturing Techniques and Factors

- a. Selection of Areas to be Surveyed.
- b. Survey of the Selected Areas.
- c. Evaluation of Survey Data and Identification of Cost Impacting Factors.
- d. Selection of Specific Structural Elements and Manufacturing Technologies for Phase II Study.

Phase II—Representative Manufacturing Lines and Model Description

- a. Selection and Detailed Development of Manufacturing Computed Model.
- b. Identification of Manufacturing Lines and Potential Areas for Improvement.
- c. Identified Phase III Plans to Determine Sensitivity of Manufacturing Cost, to Changes in System Factors (Developed in Phase I), and To the Interaction of Two or More System Factors Concurrently Impacting the Manufacturers System.

Phase III—Manufacturers System Analyses

- a. The Impact of Manufacturing Technology Differences and Changes in Factors Upon Manufacturers Cost.
- b. Interaction Analyses of More than One Change in a Factor Concurrently Impacting the Manufacturing System Cost.

Figure 2-2. Support Frustum Structure (Structural Element No. 1)

Figure 2-3. Propellant Tank Structure (Structural Element No. 2)

The second structural element selected, Figure 2-3, was a large propellant tank such as used in a Saturn V Launch Vehicle Stage. This tank is generic and design dimensions were established for a tank 21.6 feet in diameter and 56.6 feet long. A generic type of structure was selected rather than an actual structure to facilitate objectivity in the manufacturing analysis and to avoid undue reflection on a particular Apollo Saturn V component.

For each of the above structures, state-of-the-art manufacturing lines, including facilities, tooling, fabrication and assembly processes, labor requirements, and related costs were established for production rates of 2 and 20 per year. Actual data supplied by the General Electric Company, Space Division adjusted for the selected production rates was used in developing the state-of-the-art line for Structural Element No. 1. Facilities, tooling, fabrication, and assembly processes for the state-of-the-art line for Structural Element No. 2 are a composite of those used throughout the aerospace industry for such structures, as determined during the survey trips. Related cost data were developed by the General Electric Company cost estimating personnel based upon experience, discussions with tooling manufacturers, and appropriate related data.

Using the state-of-the-art line as a base and the computer model as a tool for analysis, problem areas were identified and solutions were developed and placed in the following three categories:

- a. Solutions Readily Available.
- b. Solutions Require Technology Development.
- c. Solutions Require Major Technology Development.

Changes to the state-of-the-art lines brought about by the (a) solutions formed the base of the improved line, and changes to the improved line brought about by the (b) and (c) solutions were instrumental in forming the advanced line.

Through the application of the manufacturing model described in Section 4, studies were made of the effect on cost caused by changing various factors; i.e., quantity, quality, reduction in number of design changes, etc., for the manufacturing lines while considering various rates for facilities and tooling, depreciation, property tax, and interest on capital invested.

2.2.2 ASSUMPTIONS

In arriving at cost for facilities, tooling, material, labor, and processes, the assumptions shown in Table 2-2 were used.

These assumptions were developed from numerous contacts with vendors and industry. In particular, the Air Force Manufacturing Engineering Laboratory was helpful in establishing typical costs used in study calculations. Care should be exercised in use of the absolute values of cost derived in this study since cost values vary with time and geographic location.

Since this study is primarily focused on obtaining a baseline for current manufacturing technology, study attention was concentrated on the aluminum alloys that are the principal materials used in space vehicle structures. Future studies should be performed to evaluate the impact of advanced structural materials, such as beryllium and carbon filament composites, on future manufacturing costs.

2.2.3 STUDY VARIABLES

This study is broad in scope, and evaluates the impact of many different factors and technologies on program cost. A list of such variables is shown in Table 2-3. Variables include the types of structure, lines, quantity, costs, elements, learning curves, and numerous other factors. In many cases, these variables are correlated and interaction effects are studied.

The number of cases if all these interactions were studied would be the product of the number of observations in Table 2-3, a number approaching one million. To keep the study within manageable bounds, the 12 basic combinations of 2 structures, 2 rates, and 3 lines were considered as a baseline for study evaluation. This continued to preserve the broad scope of the study. Other variables have been considered for several of these basic manufacturing lines. The results have been interpreted to identify interactions.

The computer program MANCAN described in Section 4 was used to assist in these calculations. Each of the variables presented in Table 2-3 is discussed in Section 3 with regard to the effect on program cost.

Table 2-2

Manufacturing Cost Assumptions

Materials	Costs
Aluminum Sheet	\$.68/lb*
Adhesive for Bonding	1.00/sq. ft.*
Honeycomb (Fiberglass) Extrusions (Y Rings and Cylinder Rings)	20.00/cu. ft. 4.00/ft.
Extrusions (1 Kings and Cylinder Kings)	4.00/16.
<u>Inspection</u>	
X-Ray Weld	\$ 5.50/sq. ft.* 2.00/ft.*
Sonic Inspection	5.50/sq. ft.*
Facilities & Tooling**	
All costs for required facilities and tooling are include	ed as a non-recurring expense.
Taxes, Interest, and Depreciation	
Total manufacturing program costs include:	
a. The amount of depreciation of tooling and f	acilities and assume that the tooling
and facilities are sold for depreciated valu b. As applicable interest on capital invested i	
b. As applicable interest on capital invested i of invested value per year of program 1	
c. As applicable, property taxes on facilities	and tooling equal 3% of depreciated
value per year of program length.	
Fabrication	
Metal Removal	
Numerical Controlled Milling	\$ 1.50/lb.*
Chem Mill	5.50/lb.*
Tig Welding	7.00/ft.*
Labor Rate ***	
Pre-Manufacturing	\$15.00/hr.
Manufacturing (Includes All Shop Personnel)	15.00/hr.
Quality Control (Includes Manufacturing Test)	15.00/hr.
Material Constraint	
All Materials in Elements 1 and 2 are Aluminum Alloy	s with the exception of some fasteners.
Recycle Due to Changes	
A 40 percent recycle of all pre-manufacturing operation	
included to account for impact of changes. This assum	nes that 40 percent of all planning and
manufacturing engineering work would be done over to	correct for changes during the manu-
facturing cycle.	
Land	
(Various prices were assumed for land, depending on l	
	Cape Kennedy Vicinity—\$14,500/Acre
Philadelphia Vicinity—\$35,	, vvv/Acre

NOTES:

Cost Basis—All costs including tax rates and interest on capital invested in facilities and tooling are based on 1969 values and are shown without fee. Interest and tax rates are based upon those prevalent in Volusia and Brevard Counties, Florida (Daytona Beach/Cape Kennedy vicinity).

High Bay Assembly (100 Foot) -\$60/ft.

Composite Factory and Engineering—\$25/sq. ft.

* —Data from Reference 1.

Factory/Building Space

(Assumed prices varied depending on usage, ceiling height.) Low Bay Ordinary Shop (30 Foot)—\$18/sq. ft. Compos

- ** —Data from Reference 2.
- *** -Labor rates include direct labor charges and overhead and G&A expenses, including proportionate share of cost of operating and maintaining the buildings and tools, heat, light, water, services, consumable supplies, IR&D, documentation, etc.

Table 2-3
Study Variables

	Variable	Number of Observations
1.	Type of Structure (Size, Pressurized vs. Non- Pressurized, Manned vs. Unmanned)	2 Structures
2.	Rate of Production (2/Year, 20/Year)	2 Rates
3.	Quantity Produced (1,4,10,20,100)	Average of 3 Quantities
4.	State of the Art (Mfg. Technology Differences)	3 Lines
5.	Cost Elements (Areas) (Facilities, Tooling, Pre- Manufacturing, Manufacturing)	4 Areas
6.	Cost Elements (Labor Type) (Material, Mfg. QC, Total)	4 Types
7.	Plant Location (Transportation, Separation)	2 Locations
8.	Learning Curves (100 percent, 80 percent)	2 Values
9.	Detail Steps in Fabrication, Inspection	~ 80 Steps
10.	Factors Variation (Design Tolerances, Changed Specs, Change Control, Im- proved Scheduling, etc.)	~ 20 Factors
11.	Facility and Tooling Depreciation (100 percent write-off, straight-line, sum of the years digits)	3 Rates
12.	Taxes and Interest for Facilities and Tooling (None, 3 percent tax-6 percent interest)	2 Values

SECTION 3

RESULTS AND CONCLUSIONS

3.1 INTRODUCTION

Results were determined by a detailed evaluation of the cost impact of changes to the variables in Table 2-3. These variables were studied one-at-a-time and in multiple combinations to determine their influence or manufacturing cost.

These results are presented herein, first from an overall viewpoint and then in order following that of Table 2-3. Distributions of cost grouping by the functions listed in Table 3-1 are tabulated in Section 3.3, followed by presentation of results from the interactions study for multiple variations of program factors. Additional interaction study results are given in Section 6.

Section 3 is concluded with a subsection of conclusions and recommendations for future studies.

3.2 DISCUSSION OF OVERALL COST DISTRIBUTION AND PROGRAM VARIABLES

3.2.1 OVERALL COST DISTRIBUTION

The total cost distribution is shown graphically for the three manufacturing lines in Figures 3-1 through 3-4 for various assumptions of depreciation, taxes, interest, and other factors. Figures 3-1 and 3-2 show the cost distribution for the frustum structure (Element 1) for manufacturing lines designed for production rates of 2 per year and 20 per year, respectively. Figures 3-3 and 3-4 show the analogous results for the propellant tank structure (Element 2).

The cost distribution is further subdivided within each bar as noted by the shaded areas to indicate the magnitude of costs for the major cost groups.

The first bar of each manufacturing line graph is the base (or nominal) case which serves as a basis of comparison and assumes 100 percent writeoff of facilities and tooling at the end of the program.

Table 3-1

Grouping of Like Activities Into Identifiable Cost Groups

Identification	Cost Groups	Items Included in Cost Groups					
Raw Material	M1	Sheet Aluminum, honeycomb, rivets					
In-Process Material	M2	Bonding Cement, Die Penetrant, Maskant					
Inspect Dimension Form	I1	Mechanical Inspect, X-Ray					
Weld, Bond	I 2	X-Ray, Die Penetrant, Ultra-sonic					
ASM, Other	I3	Visual, Optical, Mechanical					
Machining	S1	Trimming, Cutting, Milling, Drilling, Sawing, Machining					
Forming	S2	Stretch-form, Brake-form, Bending					
Joining	S3	Welding, Brazing					
Tooling, Material Handling	Т1	Spreader Bars, Dollies, Load Cells					
Jigs, Fixtures	Т2	Templates, Dies, Hydrostatic Test Equipment, Degreaser Tank Assembly Tower, Pressure Test Equipment					
Test-Accept	A1	Acceptance Testing, Pressure (Leak) Testing					
Storage	D1	Storage, Stock Room					
Transport	D2	Drayage, Moving on Mobile Fixture, Dollies, Shipping, Air-Cargo					
Facilities Bldg.	F1	Bricks and Mortar, Partitions, Work Stands					
Mach Tools	F2	Heat Treat, Etch, Clean and Mill, X-Ray, Weld Head, Presses					
Processing	P1	Any other processing not included above					
Chem Mill, Anneal Heat Treat, Curing	, ,						
Pre-Manufacturing Labor	L1	Near Term Pre-Manufacturing Operations Non- Recurring Cost Including 40 Percent Recycle Plus Recurring Cost Per Unit Manufactured					

Manufacturing Cost Distribution for the Support Frustum Structure (Element No.1) for 2/Year Production for 5 Years Figure 3-1.

						Recurring Recurring Non-	—
က	SI	%08	3%	%9	4+8	/ /	
8	SI	%08	3%	%9	0		
က	SL	100%	3%	%9	0	1854.1	Line 3
က	100%	100%	0	%9	0		
က	100%	100%	0	0	0	1974.7	
2	SI	80%	3%	%9	4+8	(3 %)	
23	SL	80%	3%	%9	0	Taxes & Interest (8) Pre-Mfg Labor(R) (7) HGC Labor(5) Adderial (4) Pre-Mfg Labor(NR)(3) Fracilties (2) Tooling (1)	
2	SI	100%	3%	%9	0	Taxes & Intere Pre-Mfg Labor(6) QC Labor(5) Anterial(4) FreeMfg Labor Tracilties (2) Tooling(1)	Line 2
64	100%	100%	3%	<i>%</i> 9	0		
2	100%	100%	0	0	0	2112.8	
1	SL	%08	3%	9.5	8+4	0 98	}
1	SI	80%	3%	259	0	1374.0	
-	SI	100%	3'.	5,9	0		Line 1
-	100',	100%	30,	%9	0		
-	100%	100%	0	0	rs 0		
I ine No	Denreciation	Learning Curve	Taxes (Local)	Interest	Changes to Factors	*A-tso3 margorq gairutashi latoT	į.

Figure 3-2. Manufacturing Cost Distribution for the Support Frustum Structure (Element No. 1) and 20/Year for 5 Years

Manufacturing Cost Distribution for the Propellant Tank Structure (Element No. 2) and 2/Year Production for 5 Years Figure 3-3.

Figure 3-4. Manufacturing Cost Distribution for the Propellant Tank Structure (Element No.2) and 20/Year Production for 5 Years

The second bar includes the taxes and interest on capital in addition to the 100 percent writeoff assumption. The third bar incorporates the straight line depreciation assumption for the two per year production rate cases, and the fourth bar includes a combination of certain changes to the basic manufacturing lines in addition to the straight line depreciation, taxes and interest. The latter two or three bars are shown by dashed lines for manufacturing line 2 because this data is based on data interpolated between lines 1 and 2 rather than on detailed computer program runs.

For the 20 per year production rate cases (Figures 3-2 and 3-4) the fourth bar on the graph includes the effect of an 80 percent learning curve on the recurring labor costs. The fifth bar includes the effect of combining the specific changes in addition to the learning curve.

A summary of the unit costs for the twelve nominal lines (3 lines, 2 production rates, 2 elements) is shown in Table 3-2. These unit costs correspond to the first bar of each of the graphs in Figures 3-1 through 3-4. The data presented in the bar graphs are given in tabular form in Tables 3-3 through 3-6.

Table 3-2
Unit Manufacturing Cost—K\$/Unit

		State of the Art Line No. 1 Baseline	Improved Technology Line No. 2	Advanced Technology Line No. 3	
Frustum	10 Units	\$ 109.4	\$ 116.5	\$ 126.1	
(Element	at 2/Year	(100%)	(106.4%)	(115.2%)	
No. 1)	100 Units	21.8	21.1	19.7	
	at 20/Year	(100%)	(96.7%)	(90.3%)	
Tank	10 Units	\$1757.6	\$1453.8	\$1713.2	
(Element	at 2/Year	(100%)	(82.7%)	(97.4%)	
No. 2)	100 Units	673.7	601.8	580.8	
	at 20/Year	(100%)	(89.3%)	(86.2%)	

Influence of the major variables, listed in Table 2-3, is discussed in the following paragraphs.

Table 3-3

100%3%%9154 က SL4+8 Cost K\$ 391 9 2 20 140 764 32 93 31 Manufacturing Cost Distribution for Element No. 1 and a Product Capability of 2 per Year-5 Year Program 100%3%6%438145က 0 Cost K\$ 28 165 941 SL20 5 က 55 151 100%%9 100%3%က 0 451 ~ က 145 6203821712148 Cost K\$ 55 50 100%100%0 0 145 က 0 0 <u>~</u> က 620382 1261 Cost K\$ 20 55 50 100%100%3%%9 378 113 145 2191543Ø 0 Cost K\$ 50 14 S 620 205 100%100%ଷ 0 0 0 Cost K\$ 0 ည 113 145 219116514 50 620 30 100%3% $^{\%}_{9}$ 4+8 SICost K\$ 296ಣ 20 637 3220 63 93 61 145 100%3% 6%1120 333 145 826 SLCost K\$ ß 77 50 77 142 27 100% 100%3%%90 339139 Cost K\$ က 145 5028 112620135 1434 100%100%0 0 0 0 28 Ŋ 112145 10 Cost K\$ 620135109450Interest on Capital Invested in Tooling and Facilities Material—Raw Material—Inprocess Subcontracted Components Taxes (Property) Local Pre-Mfg Labor (NR) Transportation (NR)* Total Program Cost (10 Elements) Pre-Mfg Labor (R) Transportation (R)* Changes to Factors Run No, Taxes & Interest Learning Curve Depreciation Mfg Labor Cost Item QC Labor Facilities Line No. Tooling

*Line 1, Element 2 Only

Table 3-4

Manufacturing Cost Distribution for Element No. 1 and a Product Capability of 20 per Year-5 Year Program

			г				T	г	 			·		T	·	
136	3	$_{ m IS}$	%08	3%	%9	4+8	Cost K\$	391	103	18	್ಷಾ	132	93	70	140	952
110	3	$^{7}\mathrm{S}$	%08	%8	%9	0	Cost K\$	438	162	23	6	236	145	82	165	1256
107	3	$_{ m ST}$	100%	3%	%9	0 .	Cost K\$	438	495	0.2	27	236	145	78	165	1654
104	3	100%	%001	3%	%9	0	Cost K\$	450	495	10	27	236	145	620	382	2425
09	3	%001	%001	0	0	0	Cost K\$	0	495	0.2	27	236	145	620	382	1975
199	2	100%	100%	3%	%9	0	Cost K\$	369	495	105	42	505	145	620	200	2482
40	2	100%	100%	0	0	0	Cost K\$	0	495	105	42	505	145	620	200	2113
133	1	$_{ m ST}$	%08	3%	%9	4+8	Cost K\$	285	103	65	œ	278	93	70	53	926
44	Т	$_{ m SI}$	%08	3%	%9	0	Cost K\$	321	162	89	15	497	145	78	29	1374
39	1	$_{ m SI}$	100%	3%	%9	0	Cost K\$	321	495	274	45	497	145	78	29	1922
31A	1	100%	100%	3%	%9	0	Cost K\$	327	495	274	45	497	145	620	107	2511
20	1	100%	100%	0	0	0	Cost K\$	0	495	274	45	497	145	620	107	2184
Run No.	Line No.	Depreciation	Learning Curve	Taxes (Property) Local	Interest on Capital Invested in Tooling and Facilities	Changes to Factors	Cost Item	Taxes & Interest	Pre-Mfg Labor (R) Transportation (R)*	Mfg Labor	QC Labor	Material—Raw Material—Inprocess Subcontracted Components	Pre-Mfg Labor (NR) Transportation (NR)*	Facilities	Tooling	Total Program Cost (100 Elements)

*Line 1, Element 2 Only

Table 3-5

Manufacturing Cost Distribution for Element No. 2 and a Product Capability of 2 per Year-5 Year Program

Run No.	02.	95	86	157	06	202	110	160	163	166
	100%	100%	ho	SL	100%	100%	3 100%	100%	SL	$\frac{3}{\text{SL}}$
Learning Curve	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Taxes (Property) Local	0	3%	3%	3%	0	3%	0	3%	3%	3%
Interested on Capital Invested in Tooling and Facilities	0	%9	. %9	%9	0	%9	0	%9	%9	%9
Changes to Factors	0	0	0	4, 5+8	0	0	0	0	0	4,5+8
	Cost K\$									
& Interest	0	5932	5792	4635	0	4666	0	5926	5748	4598
Pre-Mfg Labor (R) Transportation (R)*	189	189	189	121	150	150	150	150	150	96
	1131	1131	1131	734	1094	1094	1018	1018	1018	672
	664	664	664	335	589	589	519	519	519	262
Material—Raw Material—Inprocess Subcontracted Components	1418	1418	1418	715	1370	1370	1309	1309	1309	099
Pre-Mfg Labor (NR) Transportation (NR)*	892	992	892	636	896	896	896	896	896	620
	9384	9384	1173	950	6972	6972	6972	6972	871	705
	3798	3798	1871	1393	3396	3396	6196	6196	2697	2080
Total Program Cost (10 Elements)	17576	23508	13229	9518	14538	19204	17132	23058	13281	9692

*Line 1, Element 2 Only

Manufacturing Cost Distribution for Element No. 2 and a Product Capability of 20 per Year-5 Year Program Table 3-6

Run No	G8	7.A	15	2.0	120	10D	189	12D	116	119	121	194
• 01 101	}	:							ì			
Line No.	·	-	-	1	1	61	7	က	3	က	3	3
Depreciation	100%	100%	$^{\mathrm{TS}}$	$_{ m IS}$	TS	%001	%001	100%	100%	ST	$_{ m SF}$	$^{ m TS}$
Learning Curve	100%	100%	100%	80%	%08	100%	100%	%001	100%	100%	%08	80%
Taxes (Property) Local	0	3%	3%	. 3%	% c	0	%E	0	%8	3%	3%	3%
Interest on Capital Invested in Tooling and Facilities	0	%9	%9	%9	%9	0	%9	0	%9	%9	%9	%9
Changes to Factors	0	0	0	0	4,5+8	0	0	0	0	0	0	4, 5+8
Cost Item	Cost K\$	Cost K\$	Cost K\$	Cost K\$	Cost K\$	Cost K\$	Cost K\$	Cost K\$	Cost K\$	Cost K\$	Cost K\$	Cost K\$
Taxes & Interest	0	14548	14232	14232	11324	0	12235	0	12482	12176	12176	. 2996
Pre-Mfg Labor (R) Transportation (R)*	1890	1890	1890	088	999	1500	1500	1500	1500	1500	490	313
Mfg Labor	11305	11305	11306	3691	2396	10940	10940	2866	8932	9932	3243	2136
QC Labor	6641	6641	6641	2168	1093	5889	5889	2078	5078	5078	1658	836
Material—Raw Material—Inprocess Subcontracted Components	14182	14182	14182	14182	7148	13697	13697	12863	12863	12863	12863	6483
Pre-Mfg Labor (NR) Transportation (NR)*	1040	1040	1040	1040	299	896	896	896	896	896	896	620
Facilities	22833	22833	2854	2854	2312	16680	16680	16680	16680	2085	2085	1689
Tooling	9496	9496	5492	5492	3999	10510	10510	11060	11060	6002	6002	4428
Total Program Cost (100 Elements)	67388	81936	57636	44539	29504	60183	72418	58080	70562	50603	39484	26171

*Line 1, Element 2 Only

3.2.2 TYPE OF STRUCTURE

Two widely diverse types of aluminum aerospace structures were studied, One was a relatively high-production, smaller diameter frustum, which was unpressurized and for use in unmanned operations. The second structure was a larger, pressurized tank, designed for use in manned operations.

In general, results observed for each structure are similar—though some differences were noted and are discussed later. The principal impacting factors related to type of structure are associates to the differences of pressurization or nonpressurization. Higher manufacturing costs are reflected in the pressurized propellant tank structure since joints are welded rather than riveted as in the case of the support frustum. The welded pressurized joints require shop environmental control, complex welding equipment, tooling, safety and inspection procedures and acceptance testing. The nonpressurized frustum structure is riveted together. Frequently the final inspection of a riveted joint is entirely visual whereas that of a welded joint may require a sample welded specimen every time the "torch is lit" in addition to requiring weld grinding, 200 percent X-ray, dye penetrant inspection, and pressure testing.

3.2.3 RATE OF PRODUCTION

Production rates of two and twenty major structures per year for up to five years are low when compared with the production of airplanes or automobiles; however, these production rates do bracket the Saturn V and other major space hardware programs.

Production rates and program length are factors that significantly impact element cost since they are pertinent to the defining and establishment of the cost of facilities and tooling and in turn, expected property taxes, interest on capital, and the type depreciation writeoff most appropriate to the program. At the low production rate, cost of facilities and tooling including taxes and interest, and other nonrecurring items for a large pressurized structure could be 74 to 87 percent of the total manufacturers program cost and at the high production rate, 40 to 63 percent of the total manufacturers cost. For the nonpressurized smaller structure, these percentages range at the low production rate from 74 to 94 percent and 40 to 73 percent for the high or production rate.

3.2.4 QUANTITY PRODUCED

No single factor has a greater impact on unit cost than the quantity of like elements produced. For example, with a production capability of 20 elements per year, the

manufacturing cost of each element when producing 100 is less than 7 percent the cost of producing one element. With a production rate of 2 elements per year, the manufacturing cost of each element when producing 10 is in the order of 15 to 36 percent the cost of producing one element. These significant reductions in manufacturing cost are the result of nonrecurring cost amortization and reduction in recurring cost resulting from improved job learning.

3.2.5 MANUFACTURING TECHNOLOGY DIFFERENCES

With the relatively low production rates of aerospace hardware program, advances in manufacturing technologies are more likely to improve quality and reliability than reduce manufacturing cost. The application of automated machine tools, utilizing the line 3 consolidated facilities, elementary interplant transportation, and the use of new and improved processes result in the reduction of up to 60 percent in the number of major parts and the elimination of up to 40 percent of the welded joints. The element number 2 manufacturing cost at the low production rate remains essentially unchanged and is decreased by 7 to 19 percent at the higher production rates.

For both elements, the unchanged or increased cost at the low production rates and the small savings (if any) at the higher production rates is attributed to the increases in nonrecurring costs, primarily, tooling.

Improvements in quality and reliability through the application of these new technologies while not quantifiable at this time should be significant. For example, improvements in element number 2 in reducing welding would improve quality, reduce possibilities of leakage and increase payload by 325 pounds. If this payload were worth \$1000 per pound, then the overall value would increase by 21 to 62 percent over the line number 1 value.

Table 3-7
Increased Value in K\$ for Payload Increase Associated With Technology Improvements from Line No. 1 to Line No. 3

	Baseline Cost (Line No. 1)	Manufacturing △ Savings	Payload Δ Worth (For \$1000/lb)	Total Δ Worth
10 Units	\$1757.6	\$ 44.4	\$ 325	\$ 369.4
at 2/Year	(100%)	(2.6%)	(18.4%)	(21%)
100 Units	\$ 673.7	\$ 92.9	\$ 325	\$ 417.9
at 20/Year	(100%)	(13.7%)	(48.2%)	(62%)

3.2.6 NONRECURRING COST ELEMENTS

The costs include facilities, machine tools, jigs and fixtures, and premanufacturing labor. At the lower production rates, the results of the study indicated that for a five-year state-of-the-art manufacturing line program, the nonrecurring cost plus applicable taxes and interest amount to 74 to 87 percent of the total manufacturing cost and 77 to 93 percent for an advanced line program.

Compared to this, a five-year state-of-the-art manufacturing program at the higher production rates has nonrecurring cost plus applicable taxes and interest of 32 percent to 62 percent and for an advanced line program 42 percent to 72 percent.

These percentages show the importance of quantity produced since fixed (nonrecurring) costs are amortized over the total output. Indication given by the increasing percentages with the advanced technologies are that higher production is of even greater importance in holding unit element cost to a minimum. Increases in nonrecurring cost of the advanced lines are related to the increasing cost of automated and larger, more complex machine tools.

These nonrecurring costs, considering the generally low production rates of recent and current programs, are a significant area for further study for cost reductions.

3.2.7 RECURRING COST ELEMENTS

These costs include all manufacturing, quality control, and recurring "premanufacturing" labor, fabrication material cost, and expendable material such as X-ray films, inspection materials, welding rod, etc. For the low production rates, recurring costs for a five-year program are small, ranging from 6 to 26 percent. For the higher production rates, the recurring cost range from 30 to 70 percent of total program cost. The recurring cost area, as production rates approach something in the order of 20 elements per year, is a significant area for potential cost reductions.

3.2.8 PLANT LOCATION

Results of industrial surveys conducted during the Phase I portion of the study show that the aerospace corporation assembly function is generally geographically separated from the detailed fabrication and subassembly function. Results of this study indicate that for a separation of one hundred miles between the assembly plant and detail fabrication and subassembly plant, transportation cost over that of a consolidated facility amount to about one percent of the total manufacturing program cost.

Other cost factors to be considered in relation to plant location is the skilled manpower availability, construction cost, local taxes, mode of transportation available, and time in transit from assembly to test or launch area.

Training programs are very expensive. To train 50 percent of the work force, it is estimated that unit element costs increase in the order of 30 percent with a probable additional four-percent increase in cost for limited skill workers error corrections. Construction costs vary widely throughout the nation; construction labor costs and total construction costs have spreads of more than 30 percent from one location to another. Because of the size of the finished product, location near waterways or airports may have a significant transportation advantage since overland transportation has many restrictions such as tunnel and overpass clearances, roadwidths and load capacity.

Time in transit from assembly to test or launch can be costly since the product represents invested money, and interest must be paid during transit time as well as any other time.

3.2.9 LEARNING CURVES

Learning curves showing planned cost reductions are generally applied to production rates of an estimated 8 to 10 elements per year or more. One Apollo contractor stated that his learning curve was a horizontal line, and that he was actually building several different structures rather than several copies of the same structure even though outward appearance was the same. He further indicated that changes being incorporated were a big contributor to keeping the learning curve horizontal.

The results in Figures 3-1 through 3-4 show the application of "cost reduction" learning curves to the 20 per year production rate. At this production rate for a period of five years, the 80 percent curve shows a manufacturing program cost reduction of approximately 13 to 30 percent for the state-of-the-art, improved, and advanced manufacturing lines. This reduction is significant and can be achieved by holding down changes and thorough manufacturing planning.

3.2.10 DETAILS OF FABRICATION AND INSPECTION

Each manufacturing process step must be carefully defined and documented to assure that no guess work is necessary for the worker to do his job and to assure conformity with all specifications. Materials and labor costs are 18 to 25 percent of total manufacturing cost for the state-of-the-art lines and 9 to 23 percent for the advanced lines

at the low production rates for a five year program and 50 to 70 percent of total manufacturing cost for the state-of-the-art lines and 42 to 58 percent for the advanced lines at the higher production rate. Tooling costs in percent of manufacturing program cost increased in the order of 5 to 15 percent in going from the state-of-the-art to the advanced manufacturing line for both production rates. This increase in tooling cost as processes are automated, is generally offset to some degree by decrease in labor and material costs.

3.2.11 DEPRECIATION METHODS, TAXES AND INTEREST

The basic manufacturing lines and their respective cost include the assumption that equipment and facilities depreciate to "0" value at the end of the defined manufacturing program and taxes on these equipments and facilities are not considered.

As the study progressed, it became apparent that the nonrecurring portion of the total cost was very significant and that methods of depreciation as well as the taxes and interest aspect should be considered for a more realistic picture. As a result, analyses in these areas looked at both straight line and sum of the digits depreciation methods and property taxes consistent with Eastern Volusia County, Florida (3 percent = \$30 assessment per \$1000 of valuation) and interest on principle invested of six percent. The impact of these types of factors upon manufacturing costs are indicated by Figures 3-5 and 3-6 where the cost distributions are shown pictorially to illustrate the effect of taxes and interest and depreciation method upon the total program cost. The two figures present the two extremes of the problem as related to the nonrecurring/recurring cost breakdown. For example, the data in Figure 3-5 reflects the assumption that there is a 100-percent writeoff on facilities and tooling at the end of the five-year program. For the low production rate program the nonrecurring costs are about 60 percent of the total cost and if the taxes and interest cost on the facilities are included this boosts the fixed costs to a level of approximately 85 percent of total costs. The corresponding numbers for the higher production rate are approximately 37 percent and 53 percent respectively. This emphasizes the importance of the fixed cost area as a potential area for cost reduction where the facilities and tooling are totally written off (100 percent) against the job.

The other extreme is represented by the data given in Figure 3-6 where the results are based on the straight line depreciation method. This assumes that only the yearly depreciation is accumulated for the total program length and charged off as the facilities and tooling costs. Figure 3-6 shows that for the low production rate even with the

Cost Distribution for the State-of-the-Art Manufacturing Lines (Line 1) Including 100 percent Depreciation Method Figure 3-5.

Cost Distribution for the State-of-the-Art Manufacturing Line (Line 1) Including Straight Line Depreciation Method Figure 3-6.

straight line depreciation method the nonrecurring cost plus taxes and interest are about 75 percent of the total cost. This decreases to 30 to 40 percent for the 20 per year rate.

3.3 COST GROUPING

The total manufacturing program has been subdivided into 17 functional cost groups. Each of these cost groups has been given a symbolic designation. Table 3-8 shows this cost group breakdown. As an example, cost group Number 1 is designated M1 which designates the raw and supplied material cost. Tables 3-8 through 3-11 present the cost group breakdown in dollars and percent of total cost for each of the three lines for both structural elements 1 and 2 utilizing both production rate capabilities (2 per year and 20 per year). All of the data is based on a five year program and full depreciation (100 percent writeoff) is assumed at the end of the program.

Results are also shown in the major categories of Tooling, Facilities, Transportation, Materials and Labor. The Labor is separated into premanufacturing, quality control, and manufacturing labor. This is the type of output used for the Manufacturing Cost Analysis (MANCAN) computer program developed during the study. Tables 3-12 and 3-13 give a summary of the cost distributions in both dollars and percent of toal cost among these categories for the base lines.

Table 3-8
Distribution of Cost by Cost Group
For the Support Frustum Structure (Element No. 1)
Rate = 2 per Year, Program Length = 5 Years

	THE RESERVED	-																		-	
	Advanced (Line 3)	Program Cost	% of Total	4.3	ı	0.1	0.1	0.1	0.3	ı	0.1	ı	3.5	ı	1'	1	49.2	26.7	0.2	15.4	100.0
	Advance	Progr	K\$	54.7	0.4	1.0	6°0	1.1	3.4	0.3	1.3	0	45.0	0	0	0	620.0	336.5	2.0	194.8	1261.1
	Improved (Line 2)	Program Cost	% of Total	g°6	0.2	0.1	0.1	0.2	9.0	0,1	0.3	١	3.9	1	1	1	53.2	14.9	0.2	16.7	100.0
	Improv	Progr	K \$	110.5	2.3	1.4	1.2	2.2	7.4	1.0	2.9	0.2	44.9	0	0	0	620.0	173.7	2.5	194.8	1165.0
	State of the Art (Line 1)	Program Cost	% of Total	10.2	0.1	0,1	I	0.3	9.0	0,1	1.6	I	4.0	1	0.1	1	26.7	ຕ ⊗	0.1	17.8	100.0
,	State o (Li	Progr	K\$	111.0	1.1	1.3	0	3.1	7.3	6.0	17.7	0.3	43.8	0	0.5	0	620.0	7.06	1.5	194.8	1094.0
	Line	Oct Owner Hitto	Cost Group Title	Raw Material	In-Process Material	Inspect - Form, Dimen.	Inspect - Weld, Bond	Inspect - Assem., Other	Machining	Forming	Joining	Tooling, Material, Handling	Jigs and Fixtures	Test - Accept	Storage	Transport	Facilities – Buildings	Furnaces and Machine Tools	Processing - Chem Mill, Anneal, Cure	Pre-Manufacturing Labor	Total
		Cost Group	Designation	M 1	M 2	LI	12	I 3	\mathbf{S} 1	\$ 2	83	Т1	T2	A 1	D 1	D 2	ഥ	F 2	P 1	L 1	
		Ŭ	No.	1	81	ಣ	4	ည	9	L	∞	6	10	11	12	13	14	15	16	17	

Table 3–9

Distribution of Cost by Cost Group For the Support Frustum Structure (Element No. 1) Rate = 20 per Year, Program Length = 5 Years

		Line ——	State (L	State of the Art (Line 1)	Improve	Improved (Line 2)	Advance	Advanced (Line 3)
ũ	Cost Group	0.14;El 2000 2000	$\operatorname{Prog}_{\mathbb{I}}$	Program Cost	Progr	Program Cost	Progr	Program Cost
No.	Designation	Cost Group Tine	\$ X	% of Total	K \$	% of Total	K\$	% of Total
П	M 1	Raw Material	485.6	22.2	479.6	22.7	231.6	11.7
23	M 2	In-Process Material	11.5	0.5	25.6	1.2	4.5	0.2
က	L I	Inspect - Form, Dimen.	13.8	9.0	8.7	0.4	6.9	0.4
4	12	Inspect - Weld, Bond	0	1	12.0	9*0	0.6	0.5
ಬ	E 3	Inspect - Assem., Other	31.3	1.4	21.5	1.0	10.7	0.5
9	S 1	Machining	73.5	3.4	48.3	2.3	34.5	1.8
7	S 2	Forming	7.2	0.3	3.1	0.2	2.4	0.1
œ	S 3	Joining	177.0	8.1	30.0	1,4	13.5	2.0
6	T 1	Tooling, Material, Handling	0.3	ı	0.2	ı	0	1
10	Т2	Jigs and Fixtures	44.7	2.1	54.3	2.6	45.0	2.3
H	A 1	Test - Accept	0	ı	0	1	0	ı
12	D1	Storage	1.3	0.1	0	ı	0	1
13	D 2	Transport	0	1	0	1	0	1
14	F 1	Facilities - Buildings	620.0	28.4	620.0	29.3	620.0	31.4
15	F 2	Furnaces and Machine Tools	62.2	2.9	145.6	6.9	336.5	17.0
16	P 1	Processing - Chem Mill, Anneal, Cure	15.0	0.7	23.7		19.8	1.0
17	1	Pre-Manufacturing Labor	640.3	29.3	640,3	30.3	640.3	32.4
		Total	2183.7	100.0	2112.8	100.0	1974.7	100.0

Table 3-10

Distribution of Cost by Cost Group For the Propellant Tank Structure (Element No. 2) Rate = 2 per Year, Program Length = 5 Years

No. Designation Cost Group Title K\$ % of Total K\$ % of Total K\$ % of Total K\$ 10. Mal Maximited 410.0 2.3 371.0 2.6 386 2 MZ in-Process Material 1008.2 5.7 994.2 6.8 382 4 1.2 in-Process Material 145.8 0.0 154.5 1.1 146.9 5 MZ in-Process Material 147.2 0.0 154.5 1.1 146.9 6 I.2 in-Process Material 147.2 0.0 147.5 1.1 146.9 0.0 147.6 1.1 146.9 1.1			Line	State c (Li	State of the Art (Line 1)	Improve	Improved (Line 2)	Advance	Advanced (Line 3)
M1 Raw Material K\$ % of Total K\$ % of Total F M1 Raw Material 410.0 2.3 371.0 2.6 3 M2 in-Process Material 1008.2 5.7 994.2 6.8 9 11 inspect - Form, Dimen. 145.8 0.8 154.5 1.1 1 12 inspect - Weld, Bond 371.1 2.1 291.5 2.0 2 13 inspect - Weld, Bond 371.1 2.1 291.5 2.0 2 51 inspect - Assem., Other 147.2 0.9 147.6 1.0 1 51 Machining 44.6 0.9 147.6 0.9 1 4 0 1	O	ost Group		Progr	am Cost	Progr	am Cost	Progr	Program Cost
M.1 Raw Material 410,0 2.3 371.0 2.6 3 M.2 In-Process Material 1008.2 5.7 994.2 6.8 9 I.1 Inspect - Form, Dimen. 145.8 0.8 154.5 1.1 1 I.2 Inspect - Weld, Bond 371.1 2.1 291.5 2.0 2 I.3 Inspect - Assem., Other 147.2 0.9 147.6 1.0 1 S.1 Machining 128.6 0.7 115.2 0.8 1 S.2 Forming 660.3 3.8 585.8 4.0 5 S.3 Joining 660.3 3.8 585.8 4.0 5 T.1 Tooling, Material, Handling 444.6 2.5 440.2 3.0 4 T.2 Jigs and Fixtures 81.0 0.4 81.0 0.8 4 D.1 Storage 1.5 - 1.5 - 1.5 D.2 Transport <	No.	Designation		K\$	% of Total	K \$	% of Total	K\$	% of Total
M.2 In-Process Material 1008.2 5.7 994.2 6.8 9 1.1 Inspect - Form, Dimen. 145.8 0.8 154.5 1.1 1 1.2 Inspect - Form, Dimen. 145.8 0.8 154.5 1.1 1 1.2 Inspect - Porm, Dimen. 145.8 0.8 154.5 1.0 2 2 1.3 Inspect - Assem., Other 147.2 0.9 147.6 1.0 1		M 1	Raw Material	410,0	2.3	371.0	2.6	380.0	2.2
11 Inspect – Form, Dimen. 145.8 0.8 154.5 1.1 1 12 Inspect – Weld, Bond 371.1 2.1 291.5 2.0 2 13 Inspect – Assem., Other 147.2 0.9 147.6 1.0 1 S1 Machining 148.9 0.9 147.6 0.9 1.0 1 S2 Forming 660.3 3.8 585.8 4.0 5 1 S3 Joining 660.3 3.8 585.8 4.0 5 1 T1 Tooling, Material, Handling 444.6 2.5 440.2 3.0 4 T2 Jigs and Fixtures 355.0 2.0 412.0 2.8 3 A1 Test – Accept 81.0 0.4 81.0 0.6 1 1 D2 Transport 80.8 0.4 14.4 0.1 1 1 1 F1 Furnaces and Machine Tools 2998.5 17.1 2543.5<	7	M 2	In-Process Material	1008.2	5.7	994.2	8.9	929.0	5.4
12 Inspect - Weld, Bond 371.1 2.1 291.5 2.0 2 S1 Inspect - Assem., Other 147.2 0.9 147.6 1.0 1 S1 Machining 148.9 0.9 130.4 0.9 1 S2 Forming 660.3 3.8 585.8 4.0 5 S3 Joining 660.3 3.8 585.8 4.0 5 T1 Tooling, Material, Handling 444.6 2.5 440.2 3.0 4 T2 Jigs and Fixtures 355.0 2.0 412.0 2.8 3 A1 Test - Accept 81.0 0.4 81.0 0.6 3 D1 Storage 1.5 - 1.5 - 1.5 - D2 Transport 80.8 0.4 14.4 0.1 69 F1 Furnaces and Machine Tools 2998.5 17.1 2543.5 17.5 14 P1 Pre-Manufacturing L	က	—	Inspect - Form, Dimen.	145.8	8.0	154.5	H.	149.8	6°0
I3 Inspect - Assem., Other 147.2 0.9 147.6 1.0 1 S1 Machining 148.9 0.9 130.4 0.9 1 S2 Forming 123.6 0.7 115.2 0.9 1 S3 Joining 660.3 3.8 585.8 4.0 5 T1 Tooling, Material, Handling 444.6 2.5 440.2 3.0 4 T2 Jigs and Fixtures 81.0 0.4 412.0 2.8 3 4 D1 Test - Accept 81.0 0.4 81.0 0.6 4 3 3 D2 Transport 80.8 0.4 14.4 0.0 4 6 6 6 6 F1 Facilities - Buildings 9384.0 53.4 6972.0 48.0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1	4	12	Inspect - Weld, Bond	371.1	2.1	291.5	2.0	221.9	1.3
S1 Machining 148.9 0.9 130.4 0.9 1 S2 Forming 123.6 0.7 115.2 0.8 1 S3 Joining 660.3 3.8 585.8 4.0 5 T1 Tooling, Material, Handling 444.6 2.5 440.2 3.0 4 T2 Jigs and Fixtures 355.0 2.0 412.0 2.8 3 A1 Test - Accept 81.0 0.4 81.0 0.6 3 D1 Storage 1.5 - 1.5 - 1.5 - D2 Transport 80.8 0.4 14.4 0.1 69 F1 Facilities - Buildings 9384.0 53.4 6972.0 48.0 69 F2 Furnaces and Machine Tools 2998.5 17.1 2543.5 17.5 54 P1 Processing - Chem Mill. 97.5 0.6 165.5 1.1 1 L1 Pre-Manufacturing Labor 1118.1 100.0 14538.4 100.0 171 <td< td=""><td>ಬ</td><td>8</td><td>Inspect - Assem., Other</td><td>147.2</td><td>6.0</td><td>147.6</td><td>1.0</td><td>147.6</td><td>6°0</td></td<>	ಬ	8	Inspect - Assem., Other	147.2	6.0	147.6	1.0	147.6	6°0
S2 Forming 123.6 0.7 115.2 0.8 1 S3 Joining 660.3 3.8 585.8 4.0 5 T1 Tooling, Material, Handling 444.6 2.5 440.2 3.0 4 T2 Jigs and Fixtures 355.0 2.0 412.0 2.8 3 A1 Test - Accept 81.0 0.4 81.0 0.6 3.8 3 D1 Storage 1.5 - 1.5 - 1.5 - 3.0 6 F1 Facilities - Buildings 9384.0 53.4 6972.0 48.0 69 F2 Furnaces and Machine Tools 2998.5 17.1 2543.5 17.5 54 P1 Processing - Chem Mill. 97.5 0.6 165.5 1.1 1 L1 Pre-Manufacturing Labor 1118.1 6.4 1118.1 7.7 11 L1 Total 100.0 14538.4 100.0 171	9	S 1	Machining	148.9	6.0	130.4	6.0	130,4	8.0
S 3 Joining 660.3 3.8 585.8 4.0 5 T 1 Tooling, Material, Handling 444.6 2.5 440.2 3.0 4 T 2 Jigs and Fixtures 355.0 2.0 412.0 2.8 3 A 1 Test - Accept 81.0 0.4 81.0 0.6 - 1.5 - D 1 Storage 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - - 1.5 - 1.5 - 1.5 - - 1.5 - - - 1.5 - - 1.5 -	<u></u>		Forming	123.6	7.0	115.2	8.0	115.2	0.7
T1 Tooling, Material, Handling 444.6 2.5 440.2 3.0 4 T2 Jigs and Fixtures 355.0 2.0 412.0 2.8 3 A1 Test - Accept 81.0 0.4 81.0 0.6 1 D1 Storage 1.5 - 1.5 - 1.5 - D2 Transport 80.8 0.4 14.4 0.1 69 F1 Facilities - Buildings 9384.0 53.4 6972.0 48.0 69 F2 Furnaces and Machine Tools 2998.5 17.1 2543.5 17.5 54 P1 Processing - Chem Mill., 97.5 0.6 165.5 1.1 1 L1 Pre-Manufacturing Labor 1118.1 6.4 1118.1 7.7 11 Total Total 17576.1 100.0 14538.4 100.0 177	∞		Joining	660.3	3.8	585.8	4.0	516.1	3.0
T2 Jigs and Fixtures 355.0 2.0 412.0 2.8 3 A 1 Test - Accept 81.0 0.4 81.0 0.6 0.6 D 1 Storage 1.5 - 1.5 - - 1.5 - D 2 Transport 80.8 0.4 14.4 0.1 69 69 69 F 1 Facilities - Buildings 9384.0 53.4 6972.0 48.0 69 F 2 Furnaces and Machine Tools 2998.5 17.1 2543.5 17.5 54 P 1 Processing - Chem Mill, 97.5 0.6 165.5 1.1 1 L 1 Pre-Manufacturing Labor 1118.1 6.4 1118.1 7.7 11 L 1 Total Total 17576.1 100.0 14538.4 100.0 177	ග	Т1		444.6	2,5	440.2	3.0	440.2	2.6
A1 Test - Accept 81.0 0.4 81.0 0.6 9.6 D1 Storage 1.5 - 1.5 - 1.5 - D2 Transport 80.8 0.4 14.4 0.1 69 F1 Facilities - Buildings 9384.0 53.4 6972.0 48.0 69 F2 Furnaces and Machine Tools 2998.5 17.1 2543.5 17.5 54 P1 Processing - Chem Mill, 97.5 0.6 165.5 1.1 1 Anneal, Cure L1 6.4 1118.1 7.7 11 L1 Pre-Manufacturing Labor 17576.1 100.0 14538.4 100.0 171	10	87	Jigs and Fixtures	355.0	2.0	412.0	2.8	312.0	1.8
D1 Storage 1.5 - 1.5 - 1.5 - D2 Transport 80.8 0.4 14.4 0.1 69 F1 Facilities - Buildings 9384.0 53.4 6972.0 48.0 69 F2 Furnaces and Machine Tools 2998.5 17.1 2543.5 17.5 54 P1 Processing - Chem Mill, 97.5 0.6 165.5 1.1 1 L1 Pre-Manufacturing Labor 1118.1 6.4 1118.1 7.7 11 L1 Total Total 17576.1 100.0 14538.4 100.0 171	П	A 1	Test - Accept	81.0	0.4	81.0	9.0	81.0	0.5
D2 Transport 80.8 0.4 14.4 0.1 691 F1 Facilities - Buildings 9384.0 53.4 6972.0 48.0 69 F2 Furnaces and Machine Tools 2998.5 17.1 2543.5 17.5 54 P1 Processing - Chem Mill, 97.5 0.6 165.5 1.1 1 L1 Pre-Manufacturing Labor 1118.1 6.4 1118.1 7.7 11 Total Total 17576.1 100.0 14538.4 100.0 171	12	D 1	Storage	1.5	ı	1.5	1	1,5	1
F1 Facilities - Buildings 9384.0 53.4 6972.0 48.0 6 F2 Furnaces and Machine Tools 2998.5 17.1 2543.5 17.5 5 P1 Processing - Chem Mill, 97.5 0.6 165.5 1.1 1.1 L1 Pre-Manufacturing Labor 1118.1 6.4 1118.1 7.7 1 Total Total 17576.1 100.0 14538.4 100.0 17	13		Transport	8.08	0,4	14.4	0.1	14.4	0.1
F 2 Furnaces and Machine Tools 2998.5 17.1 2543.5 17.5 5 P 1 Processing - Chem Mill, Anneal, Cure 97.5 0.6 165.5 1.1 1.1 L 1 Pre-Manufacturing Labor 1118.1 6.4 1118.1 7.7 1 Total Total 17576.1 100.0 14538.4 100.0 177	14		Facilities - Buildings	9384.0	53.4	6972.0	48.0	6972.0	40.7
P 1 Processing - Chem Mill, 97.5 0.6 165.5 1.1 Anneal, Cure L 1 6.4 1118.1 7.7 1 L 1 Total 17576.1 100.0 14538.4 100.0 17	15		Furnaces and Machine Tools	2998.5	17.1	2543.5	17.5	5443.5	31.7
L 1 Pre-Manufacturing Labor 1118.1 6.4 1118.1 7.7 Total 10tal 17576.1 100.0 14538.4 100.0	16			97.5	9.0	165.5	-	159.6	6°0
17576.1 100.0 14538.4 100.0	17	L		1118.1	6.4	1118.1	2.7	1118,1	6.5
			Total	17576.1	100.0	14538.4	100.0	17132.3	100.0

Table 3-11

Distribution of Cost by Cost Group
For the Propellant Tank Structure (Element No. 2)
Rate = 20 per Year, Program Length = 5 Years

		Line	State c (Li	State of the Art (Line 1)	Improve	Improved (Line 2)	Advance	Advanced (Line 3)
S	Cost Group	Oct Owner Hitle	Progr	Program Cost	Program	am Cost	Progr	Program Cost
No.	Designation	COSt Group 11me	K\$	% of Total	\$ X	% of Total	\$М	% of Total
1	M 1	Raw Material	4100.0	6.1	3710.0	6.2	0°0088	9.9
2	M2	In-Process Material	10082.0	15.0	9941.0	16.5	9040.0	15.5
က		Inspect - Form, Dimen.	1458.0	2.2	1544.5	2.6	1446.5	2.5
4	12	Inspect - Weld, Bond	3711.0	5.5	2914.5	4.8	2188.5	8°8
ഹ	က	Inspect - Assem., Other	1471.5	2.2	1476.0	2.5	1465.5	2,5
9	S 1	Machining	1489.5	2.2	1303.5	2.2	1213.5	2,1
<u></u>	S 7	Forming	1236.0	1.9	1152.0	1.9	1152.0	2.0
∞	S S	Joining	6603.0	7.8	5859.0	2.6	5086.5	8.8
တ	- -	Tooling, Material, Handling	2184.8	3,3	2172.0	3.6	2172.0	3,7
10	T 2	Jigs and Fixtures	1083.0	1.6	1020.0	1.7	1020.0	8.1
11	A 1	Test - Accept	810.0	1.2	810.0	1,3	810.0	1,4
12	D1	Storage	15.0	ı	15.0	ı	15.0	ı
13	D2	Transport	639.3	0.9	144.0	0.2	123.0	0.2
14	г ч	Facilities - Buildings	22833.0	33.8	16680.0	27.7	16680.0	28.7
15	F 2	Furnaces and Machine Tools	6228.5	9.2	7317.5	12.2	7867.5	13.5
16	Ъ1	Processing - Chem Mill, Anneal, Cure	975.0	1.4	1656.0	2.8	1531.5	2.6
17	-	Pre-Manufacturing Labor	2468.1	3.7	2468,1	4.1	2468.1	4,3
		Total	67387.7	100.0	60183.1	100.0	58079.6	100.0

Table 3-12 Support Frustum Structure (Element No. 1) Cost Distribution

Total	Recurring	(%)	17.7		60.1		15.5	1	54.3		9.1		31.2	
Total	Non Recurring	Cost (%)	82.3		39,9	_	84.5		45.7	_	6.06		68.8	
umber)	Labor	Mfg	2.5	28	12.5	274	1.2	14	5.0	105	9.0	7	3.6	20
oper Nu		90	0.4	5	2.1	45	0.4	5	2.0	42	0.2	က	1,3	27
Percent of Total Cost (Upper Number) Cost in K\$ (Lower Number)	Material	and Consumables	10.3	112	22.8	497	9.7	113	23.9	505	4.4	55	12.0	236
Percent of Cost in K8	g Labor	Recurring	4.5	50	22.7	495	4.2	50	23.4	495	3.9	50	25.1	495
tion—	Pre-Mfg Labor	Non Recurring	13.3	145	9.9	145	12.5	145	6.9	145	11.5	145	7.3	145
Cost Distribution-		Facilities	56.7	620	28.4	620	53.2	620	29.3	620	49.2	620	31.4	620
C		Tooling	12.3	135	4.9	107	18.8	219	9.5	200	30.2	382	19.3	382
tion	Total Cost	(K\$) 5 Year Program	10 Units	1094.04	100 Units	2183.74	10 Units	1164.98	100 Units	2112.79	10 Units	1261.10	100 Units	1974.67
System Identification	Louina	Output	2 Per Year	(Run 1D)	20 Per Year	(Run 2D)	2 Per Year	(Run 3D)	20 Per Year	(Run 4D	2 Per Year	(Run 5D)	20 Per Year	(Run 6D)
Sy	Manufacturing	Line Identification		Line 1	the Art			Line 2	Improved			Line 3	Advanced	

Table 3-13

Propellant Tank Structure (Element 2) Cost Distribution

Facilities Plant #2 Recurring Recu	System Identification Annual		1 1 2	i i c	°C	Cost Distribution— Transport Plant #1		Percent of Total Cost (Uppe Cost in K\$ (Lower Number) Pre-Mg Labor	Percent of Total Cost (Upper Number) Cost in K\$ (Lower Number) Pre-Mfg Labor Material		Labor	Total Recurring Costs	Total Non Recurring
1. 22833. 9 65.	Output 5 Year Program	(K\$) 5 Year Program		Tooling	Facilities	to Plant #2	Non Recurring	Recurring	and Consumables	၁ဇ	Mfg	(%)	Costs (%)
1. 22833 462 968 1500 14182 6640 11305 49.9 16.8 49.9 16.8 490 14182 6640 11305 37.8 48.0 6.7 1.0 9.6 14182 2168 3691 37.8 48.0 6.7 1.0 9.4 4.1 7.5 22.0 68.0 16680 16680 1094 1094 1094 1094 1094 1094 1094 109	10 Tanks 2 Per Year 17576.1	10 Tanks 17576.1		21.6 3798	53.4 9384	0.3 63	5.5	0.9	8.1	3.8	6.4	19.2	80.8
22833 462 968 490 14182 2168 3691 37.8 9 48.0 6.7 1.0 9.4 4.1 7.5 22.0 16680 968 150 1370 589 1094 22.0 1 16680 968 150 1.0 28.6 4.0 7.5 41.1 1 6972 16680 968 150 1.0 28.6 4.0 7.5 41.1 1 16680 968 150 1.0 28.6 4.0 7.5 41.1 1 16680 968 150 1.0 28.6 10018 17.4 1 16680 968 150 1.0 28.6 6.9 3.0 5.9 17.4 1 16680 968 150 13697 1923 3572 17.4 1 16680 968 150 13697 1923 3572 17.4 1 16680 968 150 1369 519 1018 17.4 1 1 2 2 6 2 22.2 8.7 17.1 50.6 1680 18680 18680 18680 1888 888				14.1	33.9	9.7	1.4	2.2	21.0	9.9	16.8	49.9	50.1
3 48.0 6.7 1.0 9.4 4.1 7.5 22.0 4 6.7 1.0 9.4 4.1 7.5 22.0 4 27.7 1.6 2.5 22.8 9.8 18.2 53.3 16680 16680 1.6 2.5 22.8 9.8 18.2 53.3 16680 -Consolidated 2 1.0 1.0 28.6 4.0 7.5 41.1 16680 -Consolidated 2 1.0 1.0 28.6 4.0 7.5 41.1 2 40.7 Applicable 3 and 4 log 2 1.0 28.6 4.0 7.5 41.1 40.7 Applicable 3 and 4 log 2 1.7 2.0 1.0 28.6 4.0 7.5 41.1 2 40.7 Applicable 3 log 3 1.7 2.0 1.0 1.0 28.6 1.7 41.1 3 16680 1.7 2.0 1.0 3.0 5.1 17.1 50.6 4 1.6680 1.0 1.0 2.0 1.0 2.0 1.0	20 Per Year 54290.5 94200.5 94200.5 5 94200.5		9	17.5	42.1	0.8	1.8	490	26.1	4.0	6.8 3691	37.8	62.2
16680 16680	10 Tanks Per Year 14538.4 33 (Run 9D)	8	33	23.3	48.0		6.7	1.0	9.4	4.1	7.5	22.0	78.0
16680	100 Tanks 17. 20 Per Year 60183.1 10509 (Run 10D)	105	1050	7.4	27.7	S (eq	1.6	2.5 1500	22.8 13697	9.8	18.2	53.3	46.7
6972 40.7 decable a 5.7 0.9 7.6 3.0 5.9 17.4 6972 Applicable a 150 1309 519 1018 100t Applicable a 150 1309 519 1018 100t Applicable a 1.7 2.6 22.2 8.7 17.1 50.6 16680 968 1500 12863 5077 9931 16680 968 490 12863 1658 3242	20 Per Year 47838.6 10510 (Run 168)	105	1051	1.9	34.9	d Plant No.	2.0	1.0	28.6	4.0	7.5 3572	41.1	58.9
0 28.7 25 m 1.7 2.6 22.2 8.7 17.1 50.6 16680 968 1500 12863 5077 9931 50.6 6 35.5 2.1 1.0 27.4 3.5 6.9 38.8 16680 968 490 12863 1658 3242 8.8	10 Tanks 52 Per Year 17132,3 619 (Run 11D)	61	616	36.2	40.7	ant No. 1 an	5.7	0.9	1309	3.0	5.9	17.4	82.6
6 35.5 2.1 1.0 27.4 3.5 6.9 38.8 16680 968 490 12863 1658 3242	100 Tanks 20 Per Year 58079.6 110 (Run 12D)		110	19.0	28.7	oN OV	1.7	2.6	22.2 12863	8.7	17.1 9931	50.6	47.4
	100 Tanks 20 Per Year 46960.5 110 (Run 169)	110	110	23.6 60	35.5		2.1	1.0	27.4	3.5	6.9	38.8	61.2

3.4 RANKING AND OVERALL INTERACTION ANALYSES

3.4.1 IMPACT OF CHANGES ON PROGRAM COST

The effect of varying some of the parameters was studied so that the relative importance of the changes could be observed. Changes to the basic lines were evaluated for reasonable excursion of the selected parameters and are numbered 3 through 20 on Figure 3-7. The resultant change in cost for both elements is also shown on this figure. For this evaluation, these changes were selected to show the sensitivity of cost to the indicated parameter and are not necessarily practicable. Information related to these changes includes the following considerations:

<u>Change 3</u>—Relaxed tolerances by 100 percent, such as increasing an allowance of \pm .002 to \pm .004 for machining, illustrating the sensitivity of cost to design constraints and dimension tolerances.

<u>Change 4</u>—Reduced number of design changes by 20 percent illustrates the impact on cost if changes could be reduced below the 40-percent level of recycling assumed for these studies.

<u>Change 5</u>—Enlarges producibility files to include a 50-percent larger collection of data on processes and methods of fabrication, such as illustrated in the Appendices of Volume 3.

<u>Change 6</u>—Combine specifications issued separately by Engineering, Manufacturing and Quality Control groups for control of manufacturing. Typical specification processes are described in Section 2 of Volume 3.

<u>Change 7</u>—Improved scheduling of shop including 15 percent less changes of scheduling in the shop, with better control of shop loads.

<u>Change 8</u>—Reduction of quality control process and labor cost, in particular the reduction of some redundant operation such as inspecting welds repeatedly by several methods, so that quality control operations are reduced 20 percent. <u>Change 9</u>—Decrease of pre-manufacturing labor by reduction of recycle due to changes from 40 percent to 12 percent. This could result from reducing the number of changes going through the pre-manufacturing operations, with attendant cost savings shown in Figure 3-7.

<u>Change 10</u>—Reduce design complexity by simplifying design and hence manufacturing operations. The assumed measure is reduction of complexity and number of parts by 20 percent.

<u>Change 11</u>—Consolidate facilities (for element 2 only) from two plants into a single plant. This reduces costs of transportation, handling and the costs of maintaining separate facilities.

	Change Identification		Decrease In Cost	n Cost	100.	Increase In Cost	In Cost		
Change No.	iption	-40%	-304		-10%	+101رّ	+20%	+30′.	\$
	Reduced Tolerances by 100%								
শ্ব	Reduce No. of Design Changes by 20%						:		
ß	Enlarge Producibility Info File by 50%								
9	issue Joint Eng./Míg./QC Specs								
2	Improve Shop Schedules Load-157 Less Changes		,		Ii				
æ	Reduce Quality Required by 20%								
6	Decrease Pre-Mfg. Labor Recycle From 40 to 12%								
10	Reduce Design Complexity by 20%				Ţį				
11	Consolidate Facilities—One Factory—Line 1, Element 2 Only			1					
12	Manned to Unmanned, Element 2 Only								
13	Increase Product Size and Weight 20^{\prime}_{i}								
14	Train 50^c of Work Force								
15	Security-Nonclassified to Classified					8			
16	Site Selection—Labor Cost Florida to Ohio				= =				
17	Delete Plant Safety								
18	Depreciation—Straight Line (SL) F-1 to "O" in 40 Years, F2 to "O" in 14 Years, T1 to T2 to "O" at end of Program	i	1	555 Case 4345					
19	Depreciation—Sum of Digits—Time Same as Above		1						
20	Increase Shop Load 10'. For Discrepancy Corrections	ns.							

Figure 3-7. Impact of Factor Changes on Manufacturing Costs

<u>Change 12</u>—Changes associated with changing a manned structure (man-rated) to an unmanned structure, but preserving the same design dimensional tolerances.

Change 13—Increase of element size and weight by 20 percent but keeping the same design configuration, materials and complexity.

<u>Change 14</u>—Includes those activities required to train 50 percent of the work force, such as might occur in a new location of the plant or fabricating structure in an environment where there was a 50-percent turnover in shop personnel.

<u>Change 15</u>—Impact of security classification (such as SECRET) on actual hardware costs. Costs reflect those changes which could be necessary if a manufactured item becomes classified.

<u>Change 16</u>—Changes and cost differences if the plants were located in Ohio rather than Florida.

Change 17—Changes in immediately identifiable costs if all such costs related to plant safety were eliminated. However, these costs do not include the resultant costs for lost-time accidents, reduced quality products or other losses which result from an inadequate safety program.

<u>Change 18</u>—Baseline costs assume facilities and tooling are written off 100 percent at the end of the program. This change indicates the cost savings noted if facilities and tooling have a value at the end of the program as noted in Figure 3-7, with straight line depreciation.

Change 19—Same as 18 but with value at the end of the program as determined by the sum of the year's digits.

Change 20—This change shows the cost increase associated with increased discrepancy and scrappage by 10 percent of nominal shop load.

The corresponding tabular values of the changes plotted in Figure 3-7 are given in Table 3-14.

Ranking these changes by impact on cost, the results are shown in Table 3-15 for both element 1 and element 2. As noted earlier, depreciation assumptions (and hence value of facilities at the end of the program) are important factors in determining manufacturing costs.

Change Impact Study
State of the Art Manufacturing Line
(Based Upon Production Rate of 20 Elements/ Year—5 Year Production Program—100 Elements) Table 3-14

	Cost Item	ធ	Element No. 1		1	Element No. 2	
	1600	Program	Unit Cost	() (The man	Program	Unit Cost	, O.F.
	Change (Factor)	Cost-K\$	K\$	% Change	Cost-K\$	K\$	% Change
No.	Description Base	2183.7	21.8	0	67387.7	673.9	0
3	Relaxed Tolerances by 100%	2045.6	20.5	6.0	63519.0	635.2	- 5.8
4	Reduce No. of Design Changes by 20%	1818.7	18.2	-16.5	56913.8	569.1	-15.6
2	Enlarge Producibility Info. File by 50%	2024.2	20.2	- 7.3	60582.8	8.509	-10.1
9	Issue Joint Eng./Mfg./QC Specs	1972.8	19.7	9.6 -	60782.3	8.709	8.6 -
7	Improve Shop Schedule and Load—15% Less Changes	2057.4	20.6	- 5.5	63815.4	638.2	- 5.3
∞	Reduce Quality Req. by 20%	1862.8	18.6	-14.2	59461.2	594.6	-11.7
6	Decrease Pre-Mfg. Labor Recycle from 40 to 12%	2055.7	20.6	- 5.5	66894.1	6.899	- 0.7
10	Reduce Design Complexity by 20%	2118.8	21.2	- 2.8	64301.2	643.0	- 4.6
11	Consolidate Facilities—One Factory	ı	ı	ı	58640.5	586.4	-13.0
12	Manned to Unmanned	ı	ı	ı	66249.4	662.5	- 1.7
13	Increase Product Size and Weight 20%	2853.7	28.5	+30.7	85952.8	859.5	+27.5
14	Train 50% of Work Force	2889.2	28.9	+32.6	83917.1	839.2	+24.5
15	Security—Unclassified to Classified	2532.1	25.3	+16.0	74748.5	747.5	+11.0
16	Site Selection—Labor Cost—Florida to Ohio	2307.7	23.1	0.9 +	71954.3	719.5	+ 6.8
17	Delete Plant Safety	2162.4	21.6	6.0 -	65837.2	658.4	- 2,3
18	Depreciation—Straight Line F-1 to "0" in 40 Years F-2 to "0" in 14 Years T-1 to T-2 to "0" at End of Program	1604.5	16.1	-26.1	43536.7	435.4	-35.4
1.9	Depreciation—Sum of Digits	1679.6	16.8	-23.0	47128.0	471.3	-30.1
20	Increase Shop Load 10% for Discrepancy Corrections	2290.2	22.9	+ 5.0	69983.6	8.669	+ 3,8
10+13					81746.5	817.5	+21.2

Table 3-15
Relative Ranking of Selected Changes to the Basic Line*

Rank	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Change Number	18	19	4	8	6	5	3	7	9	10	17	20	16	15	13	14			Element 1
Change Number	18	19	4	11	8	5	6	3	7	10	17	9	12	2 0	16	15	14	13	Element 2

^{*}Basic Line is Line 1 for a Production Rate of 20 Per Year and a Five-Year Program (100 Units) with Full Depreciation at the End of Five Years.

3.4.2 SUMMARY OF OVERALL VARIATION IN MANUFACTURING COST

The overall impact of technology improvements on the manufacturing cost of the structural elements is shown by the change in costs from manufacturing line number 1 to manufacturing line number 3. This spans the total range considered in this study for impact of advancement in manufacturing technologies. For each element, both production capability rates (2 per year and 20 per year) were considered for two types of selected depreciation methods, e.g., 100 percent writeoff of tools and facilities at the end of the manufacturing program and straight line depreciation. Impact of taxes of 3 percent per year and interest on capital of 6 percent per year are also included in all of the results.

Figure 3-8 shows the results of this study. The results are presented so that the variation of the unit cost is given by the shaded range. For example, for Element Number 1, 2 per year production rate, and 100 percent depreciation method, Figure 3-8 shows that the total change in unit cost varies from a minimum of a 19-percent increase in cost to a maximum of a 26-percent increase in cost when going from the state-of-the-art manufacturing technology (line 1) to an advance manufacturing technology (line 3). The 26-percent increase in cost corresponds to a program which makes only one unit, and the 19-percent increase corresponds to a program in which 10 units are made. It should be noted that the bounds of this range change to 14 percent and 10 percent for the straight line depreciation method.

Ranges of Impact of Manufacturing Technology Improvement in Changing From Line Number 1 to Line Number 3. Figure 3-8.

The results in Figure 3-8 point out the fact that for Element Number 1, there is little cost advantage in going from the current line to an advanced technology as long as there is an interest in only low production rates. Also, the data shows that an insignificant advantage is gained by going to the advanced technology for Element Number 2 at the low production rate. It is only when the number of units produced is large (100) that a significant reduction in unit cost becomes evident. Other advantages, such as improved quality, reduced leakage potential, and higher reliability may accompany the manufacturing technology improvements

From the myriad of calculations made throughout this study the prime variables which affect the manufacturing cost of an element have been identified. These variables include the quantity produced, depreciation, taxes and interest, labor and material, and the learning effect. The range of impact which these variables have on manufacturing cost is given in Figure 3-9. The data presented in this figure are not meant to reflect the absolute upper and lower bounds; rather, these are the bounds determined from the selected cases for which calculations were made. The values are included to illustrate the sensitivity of costs to the major program variables and are not intended as practical suggestions for improvements. Bars are shown on the graph of Figure 3-9 for both 2 per year and 20 per year production rate capabilities for each of the categories and the program length is 5 years in all cases except those involving variation in quantity produced. It should be noted that the data includes both that of structural Element Number 1 and Element Number 2 and spans the technology differences of all three manufacturing lines.

Referring to Figure 3-9 it is observable that in increasing the quantity of units produced from 1 to 10 at the production capability of 2 per year the range of the cost reductions observed from all calculations was from 71 percent to 90 percent. For the 20 per year capability this range is from 92 percent to 99 percent which illustrates the potential of the higher production rates and quantity.

The range of cost reduction found when going from 100 percent depreciation to the straight line method is from 42 percent to 73 percent for the low production rate capability. This range is fairly large but again, the data covers cases involving both Elements Number 1 and Number 2 as well as spanning the technology advancements from the state-of-the-art line (line 1) to the advanced line (line 3). The labor and materials bars reemphasize one of the major results of this study, namely that for the low production capability the recurring labor costs are a small portion of total costs. They range from 9 percent to 25 percent for the cases chosen for investigation.

Figure 3-9. Ranges of Impact of Major Factors on Unit Manufacturing Costs

3.4.3 INTERACTIONS OF RESULTS

Results were evaluated for variations of several major factors simultaneously to study interaction effects. Figures 3-10 through 3-13 summarize results for both elements (one and two) and production capabilities (2 per year and 20 per year) showing unit production cost versus quantity for selected variations including:

- a. Program length.
- b. Type of depreciation.
- c. Inclusion of tax and interest.
- d. Technology improvements from line number one to line number 3.
- e. Selected factors (4, 5, 8) as listed in Table 3-1.
- f. Learning Curve.

The strong impact of quantity, depreciation and factors are illustrated in these figures. For low quantity, the depreciation assumptions are important and the factors (e) and (f) above less important. As quantity increases, the per unit cost level drops and the impact of the other factors increases. Overall costs range over two orders of magnitude, indicating the importance of such manufacturing considerations.

The general approach used in the development of Figures 3-10 through 3-13 was to start with the conditions which give a realistic upper bound on cost which corresponds with the 100 percent depreciation including taxes and interest. From here a significant change was incorporated which tended to lower the cost; a change in the depreciation method, for instance. Then another change was included to lower the cost, proceeding finally to the condition considered to give a realistic lower bound on the cost. This approach included, of course, the parameters such as different lines, quantity, etc.

Figures 3-14 and 3-15 are a combination of some of the data presented in Figures 3-10 through 3-13. Figures 3-14 and 3-15 allow direct comparison of cost between the lower and higher production rates and the data encompasses the toal range of realistic costs from the upper to lower bounds.

The individual calculations including detailed discussions of interactions of some of the myriad of manufacturing factors are given in Section 6 of this report.

*See Figure 3-7 for Definition of Changes

Figure 3-10. Unit Cost Versus Quantity for Element No. 1 at a Production Rate of 2 per Year.

Figure 3-11. Unit Cost Versus Quantity for Element No. 1 at a Production Rate of 20 per Year

*See Figure 3-7 for Definition of Changes Note-Line 1 and Line 3 Data Coincide for All 3 Cases in this Figure

Figure 3-12. Unit Cost Versus Quantity for Element No. 2 at a Production Rate of 2 per Year.

*See Figure 3-7 for Definition of Changes

Figure 3-13. Unit Cost Versus Quantity for Element No. 2 at a Production Rate of 20 per Year

NOTES:

- (1) 100% Learning Curve Except As Noted
- (2) Changes 4 & 8 are Included in the Lower 4 Curves
- (3) Tax and Interest Included—All Curves

Figure 3-14. Cost Impact of Quantity for Various Change for Element No. 1

NOTES:

- (1) 100% Learning Curve except as noted.
- (2) Changes 4&5&8 are included in the lower 3 curves.
- (3) Tax and Interest included in all curves.

Figure 3-15. Cost Impact of Quantity for Various Changes for Element No. 2

3.5 CONCLUSIONS AND RECOMMENDATIONS

Quantity has the largest impact on the unit manufacturing cost of the typical aerospace structures considered in this study. Large nonrecurring costs (including facilities depreciation) are required which must be written off against a small number of units produced. As quantity increases, the nonrecurring cost burden for each unit decreases. Improved learning is the secondary contributor to reduced unit cost with increased quantity.

Other factors of significant influence are: (a) methods of joining pressurized structures, and (b) consolidation of facilities in which the manufacturing and assembly facilities are geographically separated. In the former case there is a potential for cost reduction through improved welding techniques. Improvements in this area may facilitate reduction in the extensive quality control labor required with present techniques. In the latter case, a significant cost reduction can be realized by consolidating the manufacturing and assembly facilities into a single plant.

The advanced manufacturing technologies investigated show limited potential for cost reduction for the conventional aluminum materials. Advancements in manufacturing have progressed at a pace consistent with related technologies leaving only limited potential for major cost reductions. However, significant benefits of manufacturing technology advancements may be realized through improvements in quality.

In general, large (order of magnitude) cost reductions are not indicated for the conventional materials and designs at the low quantities inherent with most aerospace structural applications. The most significant area for large cost reduction, within the constraints of limited quantity, is in the potential of advanced designs which minimize nonrecurring (facilities and tooling) costs. Advanced materials, such as composite materials, may be in this category. Advanced techniques for fabrication and inspection may permit low cost facilities and hence significant cost reductions for future aerospace equipment.

Recommendations for further studies to better define technology and explore cost reductions include the following:

- a. Advanced materials study to explore potential for reduced nonrecurring costs as well as improved quality and performance.
- b. Evaluation of applicability of these study results to aircraft and to reusable space vehicle structures.

- c. Low cost facilities study.
- d. Welding techniques and quality control study.
- e. Use of the "MANCAN" computer program for other manufacturing applications including analysis and documentation of processes.

These studies, particularly a. and b. above, should lead to identification and exploration of new fields of technology for future lower-cost vehicles.

SECTION 4

MANUFACTURING COMPUTER MODEL

4.1 METHODOLOGY

4.1.1 MODEL REQUIREMENTS

Requirements were established for a manufacturing computer model as follows:

- a. <u>Definition</u>—A semi-automated (combined manual and computer routines) model shall be capable of rapidly assembling costs and labor distributions for each of the detailed steps in the manufacturing process.
- b. <u>Objective</u>—This model shall have the capability to rapidly evaluate influence of variable program factors and manufacturing technology on cost and worth.
- c. <u>Scope</u>—The model shall include facilities and grounds, tooling, machine tools, jigs and fixtures, pre-manufacturing (expediting), quality control, manufacturing processes, and manufacturing test. The model shall encompass sufficient flexibility to handle various structural configurations, line configurations, rates of production and period of production (total quantity), and plant locations.
- d. <u>Learning Curve</u>—The model shall include provisions for incorporating reduction in cost as a function of quantity produced, by a standard learning curve procedure (such as the Stanford Learning Curve).
- e. Operation—The automated system shall be set up in a user-interactive mode on a time-sharing computer system so that the user can control runs and output from a remote terminal. Instructions may be entered either directly or from a storage file.
- f. Output—The program shall produce either a detailed or summary output listing each of the categories of cost and labor activity and the subtotals by each of these categories. The output shall indicate assumptions as well as results. Costs and labor shall be expressed either in absolute numbers or as percent of the totals.

A schematic illustration of the model requirements is shown in Figure 4-1. In this figure, those operations external to the computer program are noted, as well as inputs and outputs to each module or operation. The basic computer program is shown in

Figure 4-1. Manufacturing Model

the elliptical frame; the other activities support or analyze results of this basic program. The manufacturing line definition was performed manually, and the resultant lines and analyses are described in Section 5.

4.1.2 MODEL SELECTION

In selecting a model to meet the above requirements, several possible types of models were considered, including:

- a. Explicit model—building each model as required to meet specific requirements of each line. This would result in as many models as combinations of lines and configurations.
- b. Simulation model which simulates the flow process by simulating each step, process utilization of machines, personnel, etc. An example of this simulation is the GPSS program such as described in Reference 12.

 Again, a separate model is required for each line.
- c. Simplistic (throughput) model, which accumulates costs from specific data files in a general purpose assembly program with a specific output format.

The third model type above—the simplistic or throughput model—was selected to more readily accommodate the study data while producing outputs on a standardized format. This model, described in more detail in the following paragraph, is an accumulation type of system where data is identified and summed to produce requested totals. No simulation or looping features are provided, rather each individual step is determined and costed separately on a one-time-through basis. This simplicity allows considerable flexibility in the data processed and virtually unlimited number of input line configuration and factors studies.

With the selected model, the input data and line identification items are processed manually into data files prior to operation of the computer program. In like manner the interpretation of the impact of technology improvements or variations in program factors are performed manually using several assisting programs as desired from the time-sharing libraries, including:

- a. Regression analysis to determine impact of multiple variables on results.
- b. Integer programming optimization routines to select preferred combinations of improvements in the presence of real program constraints.
- c. Factorial design analysis.

The results are interpreted and assembled in Section 6 to indicate impact of program parameters on total costs.

4.2 MANUFACTURING COMPUTER MODEL DESCRIPTION

4.2.1 SUMMARY

In summary, the automated manufacturing model is a system that quantifies the cost of manufacturing a typical piece of aero space structure. The manufacture of specified structures is considered in detail. The costs incurred are broken down into four categories:

- a. Tooling.
- b. Facilities.
- c. Pre-Manufacturing.
- d. Manufacturing Processes.

The individual steps that are performed during the manufacture of these structures are input together with manufacturing labor rates and other data into separate files. The basic set of steps that are performed to manufacture these structures based on current technology and capabilities are denoted as the state-of-the-art manufacturing line (Line 1). The costs associated with the total manufacturing activity for a structure are accumulated and displayed as total cost.

In addition to the basic manufacturing line (Line 1), two additional manufacturing lines are established (Lines 2 and 3): Line 2 incorporates improvements that can be made to Line 1 with present technology and Line 3 incorporates advanced manufacturing ideas that are determined to be feasible for the manufacture of these types of structures.

Options available include the capability of varying production rate (2 per year and 20 per year), quantity produced, and use of learning curves. The capability has been included to allow assessment of the difference in total program costs when specific changes are made in the nominal manufacturing procedures.

4.2.2 INPUT/OUTPUT

The input requirements and the output options of the Manufacturing Cost Analysis Program (MANCAN) are shown in Figure 4-2.

Input/Output of the Manufacturing Cost Figure 4-2. Analysis Program (MANCAN)

4.2.3 MATH MODEL

Typical equations for cost calculations include the following:

Let

= Program Length (Years). K5

= Production Rate. K6

= Quality Control Labor Rate. L_5

L6= Manufacturing Labor Rate.

F = Learning Curve Factor.

K4 = Change Number.

 $D_{i,j}$ The matrix containing material cost, quality control labor and

manufacturing labor cost data.

Elements of Di. j

= Material cost per unit. $d_{i,1}$

d_{i.2} Material correction factor code number.

Quality Control labor (M/hrs) per unit.

Quality Control labor correction factor code number.

 $d_{1,5}$ = Manufacturing Labor (M/hrs) per unit.

d_{1,6} = Manufacturing Labor correction factor code number.

 $C_{i, j}$ = Matrix of correction factors.

 $c_{i,j}$ = Element of matrix $C_{i,j}$. (Correction factor j corresponding to change i from the nominal case.)

N = Total number of steps in Manufacturing Process.

T1 = Material cost.

T2 = Quality Control labor cost.

T3 = Manufacturing labor cost.

i = Manufacturing step number.

Then

where

$$F = \begin{cases} 1 & , & K6 = 2 \\ \frac{1}{20 \text{ (K5)}} \sum_{I=1}^{20 \text{ (K5)}} (I)^{S} & , & K6 = 20 \end{cases}$$

S = Slope of learning curve on log-log paper.

The total process cost is therefore

$$T = \sum_{i=1}^{N} (T1_i + T2_i + T3_i).$$

The material cost, quality control labor and manufacturing labor costs are, respectively:

$$T1 = \sum_{i=1}^{N} T1_i$$

$$T2 = \sum_{i=1}^{N} T2_{i}$$

$$T3 = \sum_{i=1}^{N} T3_{i}$$

4.2.4 FLOW DIAGRAM

A flow diagram for the manufacturing line computer program MANCAN is shown in Figure 4-3. The files with supporting data which can be called to run this program are shown in Table 4-1. The main program is called MANCAN, the file containing factor variation with program change is named FACTORS.

The main data files are listed in the matrix in Table 4-2, with file titles indicated at appropriate locations on this matrix.

Table 4-1

MANCAN Operating Files

Name	Title
Factors	FACTORS
Main Program	MANCAN
Input Data	INPUT

4.2.5 EXAMPLE OF OPERATION

A sample operation is shown in Figure 4-4, which gives the steps necessary to run the MANCAN program. All of the circled information was typed in by the program operator.

(Words in Matrix Indicate Names of Files Called During the Operation of MANCAN) Table 4-2

				Elemer	Element No. 2					Elemer	Element No. 1		
Type of Data		Lin	Line 1	Lir	Line 2	Lin	Line 3	Line 1	ie 1	Lin	Line 2	Line 3	6 3
		2 Per Year	2 Per Year 20 Per Year 2 Per		20 Per Year	2 Per Year	20 Per Year	2 Per Year	Year 20 Per Year 2 Per Year 20 Per Year	2 Per Year	20 Per Year	2 Per Year	20 Per Year
Tooling	Description File	LINE1	LINEL	LINE2	LINE2	LINE3	LINE3	LINE4	LINE4	LINES	LINE5	LINE6	LINE6
)	Data File	DATA1	DATA1	DATA2	DATA2	DATA3	DATA3	DATA4	DATA4	DATA5	DATA5	DATA6	DATA6
Facility and Transp.	Data File	FACIL1)IL1		FACIL2	11.2				FACIL3	IL3		
Pre-Mfg.	Description File						LIPREM	ЕМ	,				
	Data File						DIPREM	EM					
Mfg.	Description File		LINE1P		LINE2P		LIN3AP	LINE4P	LIN4AP	LINESP	LIN5AP	LIN	LINE6P
	Data File	DAT	DATAIP	DAT	DATA2P	DATA3P	DAT3AP	DATA4P	DAT4AP	DATA5P	DAT5AP	DATA6P	DAT6AP


```
18:21 EST 24 DEC 78
          6-529
MARK II
USER NO .- GPW91891.)
PROJECT ID--AMES
SYSTEM- BASIC
NEW OR OLD--OLD
ENTER FILE NAME-MANCAN
                         12/24/76
             16:22 6
MANCAN
DO YOU WANT TO RUN USING FILE INPUT? TYPE YES OR NO. ? (NO)
DO YOU WANT THE OUTPUT IN 'S' OR '% OF TOTAL COST'TTYPE'S OR % .? S)
DO YOU DESIRE USER INSTRUCTIONS? TYPE YES OR NO .? YES
     THERE ARE FIVE FACTORS WHICH MUST BE INPUT WHEN THE
NEXT QUESTION MARK APPEARS. THESE MUST BE INPUT IN THE
FOLLOYING ORDER: K1.K2.K3.K4.K5
WHERE:
   K1= LINE NUMBER (1,2,0R 3)
     KLEIS STATE-OF-THE-ART MANUFACTURING LINE
     K1-2: IMPROVED MANUFACTURING LINE
     KIRS: ADVANCED MANUFACTURING LINE
   KE ALLOWS THE PRODUCTION RATE SELECTION
     (K2=1 FOR 2/YR, K2=2 FOR 26/YR)
   K3 ALLOWS THE SELECTION OF THE STRUCTURE
     KORI FOR THE TANK ASSEMBLY
     K3=2 FOR THE MARK XII ADAPTER ASSEMBLY
   K4 ALLOWS THE SELECTION OF A CHANGE TO BE MADE TO THE NOMINAL
   MANUFACTURING LINE
     KARLI FOR THE NOMINAL LINE
     K4=2: ANY COMBINATION OF THE FOLLOWING CHANGES
     K4831 TOLERANCES ARE RELAXED BY 166%
     K4541 DESIGN CHANGES REDUCED BY 28%
     K4=51 PRODUCIBILITY FILE ENLARGED BY 56%
     K4=6: ISSUE JOINT ENGR/MFG/QC SPECS
     K4=7: IMPROVED SHOP SCHEDULE & LOAD K4=8: REDUCE QUALITY REQ'HTS BY 26%
     K4=9: DECREASE PRE-MFG. LABOR RECYCLE TO 12%
        NOTE: 46% LABOR RECYCLE CONSIDERED NOMINAL
      K4=10: REDUCE DESIGN COMPLEXITY BY 26%
      KARLIS CONSOLIDATE TO & FACILITY
      K4=12: GO FROM MANNED TO UNMANNED
      K4=13: INCREASE PRODUCT SIZE & WT. BY 26%
      K44141 TRAIN 583 OF WORK FORCE
      K4=15: GO FROM UNCLASS. TO CLASSIFIED SECURITY
      K4416: MOVE MFG. PLANT FROM PLA. TO OHIO
      K4817: DELETE PLANT SAPETY PROGRAM
      KARISI S YR ST. LINE DEPRECIATION
      K4=19: SUM OF YRS DIGIT DEPREC.
     K4928: INCR. SHOP LOAD 18% FOR CORRECTIONS
   KS IS THE TOTAL PROGRAM LENGTH IN YEARS
7 (1.2.1.2.5)
DO YOU WANT DETAILED OUTPUT(ENTER D).OR SUMMARY(ENTER S)?
DO YOU WANT A LEARNING CURVE EFFECT INCLUDED? YES OR NO? YES
ENTER THE PERCENT STANFORD CURVE DESIRED 1 56 ENTER THE TOTAL NO. OF CHANGEST 3
ENTER THE 3 CHANGE NUMBERS? 4,5,8
```

Figure 4-4. MANCAN Program Operation

After the READY signal is received, the program is available to the operator. If any changes are necessary, they can be made at this time. For example, the hourly labor rate for Quality Control, Manufacturing, and Pre-Manufacturing activities has been assumed to be \$15 per hour for most of the cases investigated. These rates can be changed by changing lines 140, 150, and 160 of the program. This can be seen by inspecting these line numbers in the program listing in Appendix A.

Following the changes to the program, the program can be started by typing RUN. The first question that must be answered is whether or not to make a run using the INPUT file. The INPUT file is a file that is created external to the main program MANCAN. If a number of runs is to be made, this is the method whereby all of the runs can be made at one time by establishing a file called INPUT. Each line of the INPUT file must have at least nine entries; these entries correspond to the nine variables K1, K2, K3, K4, K5, P\$, K6\$, P, Y\$, Z1, Z(1), Z(2) . . . Z(Z1). The first five variables are defined by the information in Figure 4-4. P\$ is the key that allows the selection of the output printout format; input S for Summary, D for detailed or B for both. K6\$ is either YES or NO and answers the question as to whether a learning curve is to be included. P is the percent learning curve desired if used, and Y\$ is either \$ or %, which tells the program whether the results are to be printed in dollars or in percent of total program cost. If more than one change is to be incorporated in a run K4 must = 2, and the Z factors following Y\$ must be put in. Z1 gives the total number of changes to be incorporated simultaneously and the Z(i) are the actual change numbers to be incorporated. It should be noted that the combination of changes to be used simultaneously should be chosen discretely. For instance the results would have little meaning if two types of depreciation were considered at the same time. The program logic will allow any of the changes to be used simultaneously so it is left to the user to be aware of what he is asking.

Each line of nine (or more) entries in the INPUT file establishes the data necessary for one run of the program, and as many cases as desired can be put in the file. If the INPUT file is not used, the program proceeds to ask questions as shown in Figure 4-4 so that enough data is obtained to make a run.

The computer output corresponding to the data given in Figure 4-4 is shown in Figure 4-5.

MANUFACTURING COST ANALYSIS

LINE: STATE-OF-THE-ART MANUFACTURING LINE (LINE 1)

STRUCTURE: PROPELLANT TANK STRUCTURE (ELEMENT 2)

PRODUCTION RATE: 26 PER YEAR

PERCENT LEARNING CURVE USED: 86

VARIATION FROM THE NOMINAL: CHANGE NO.(\$) 4 + 5 + 8

TOTAL PROGRAM LENGTH: 5 YEARS; NO. OF UNITS PRODUCED: 106

LABOR RATES-(S/HR): PRE-MFG.- 15. ; Q.C.- 15. ; MFG.- 15.

SUMMARY OF RESULTS

	MAT'L COST (KS)	Q.C. LABOR (M/HR)	MFG. LABOR (M/HR)	PRE-MFG. LABOR (M/HR)	TOTAL COST (KS)
TOOLING FACILITIES TRANSPORTATION					7241 • 95 18494 • 7
NON-RECURRING COST RECUBRING COST PRE-MANUFACTURING	ř				46+8504 252•72
NON-RECURRING COST	190-0-10 to 100			41385 • 6 26875 •	612-584 313-425
MFG. PROCESSES	7147.73	72645+5	159709.	****	19636-1
ianan IN (VA)	7147.73	72845.5	159769•	62266 • 6	37605+3
LABOR IN (KS)	*	1872.65	< 2395.64) UNIT COST	f: 37 6-6 53

USED 5-55 UNITS

Figure 4-5. MANCAN Output Corresponding to Input Given in Figure 4-4.

SECTION 5

IDENTIFICATION OF MANUFACTURING LINES AND POTENTIAL AREAS FOR IMPROVEMENT

- 5.1 DESCRIPTION, STATE OF THE ART MANUFACTURING LINE, LINE 1
- 5.1.1 PROPELLANT TANK STRUCTURE, ELEMENT NO. 2

5.1.1.1 General Description

The liquid hydrogen, liquid oxygen propellant tank structure, illustrated in Figure 2-2, is characteristic of large tanks used on the Saturn V and planned for the Space Shuttle. For this study, the aluminum alloys are retained with at least some welding on all designs. Since the structure must be absolutely pressure tight—especially between the hydrogen and oxygen tanks, considerable care and inspection are required. This requirement, coupled with the large (260-inch diameter) size has necessitated a rather detailed manufacturing analysis. However, this structure should provide realistic observations and study results of the impact of program factors on construction, since its size and construction are similar to today's technology. The construction of this tank is a hybrid between the methods used on the S-II stage, S-IVB stage, or planned for use on the Space Shuttle tankage. The manufacturing lines are principally concerned with two domes, a common bulkhead, and a cylindrical section. Characteristically, these are formed with large machines, either as stretch forming of components which are welded into the whole, or as major sections which are formed or spun in toto and then assembled with fewer welds.

Technology advancements for this structure are concerned, in the main, with these major operations: stretching, tank forming, joining, inspecting and material handling. Details of the manufacturing lines incorporating these operations are described in the following sections.

The initial line (line 1) presumes a realistic, today's state-of-the-art situation where tank components are fabricated in one location and assembled in a second location. Of the several major Saturn V/Apollo components studied during Phase I, all were made in this manner—components were fabricated in one plant and assembled in another.

The details of the manufacturing processes, tools and material handling are summarized in Figure 5-1 for this propellant tank. The processes and tooling indicated in this figure are described in the following sections. The numbers on this chart correspond with the step numbers and can be correlated with later figures showing computer printouts.

5.1.1.2 Manufacturing Processes and Methods

From References 3 through 6 and information gained during the Phase I manufacturing facility tours, the manufacturing processes were developed and sequence numbers were assigned for each defined detail component, subassembly, assembly, and finally the total tank assembly. Material costs were computed based upon dimensions shown in Figure 2-2, material thicknesses from the above reference, and the assumptions shown in Table 2-2.

As each manufacturing process was defined and placed into its respective sequence, a plant number also was assigned. An analysis was made of each of the manufacturing processes to determine its material cost as applicable and its man-hour requirements for machine setup time, manufacture, assembly, test, and quality control. The results of these analyses along with the defined and sequenced manufacturing processes are shown in Figure 5-2.

5.1.1.3 Tooling

Concurrent with the determination of man-hour requirements, and also based upon References 3 through 6 and the information gained during the Phase I manufacturing facility tours, tool requirements lists were developed on a component basis. Tool use times were estimated and the number of tools required for production rates of 2 and 20 per year were determined. The floor space requirements of each tool were determined from Reference 3 and other sources, such as the actual tool manufacturer. These floor space requirements were adjusted for walk-around clearance. Tooling unit costs were supplied by manufacturers or estimated by the General Electric Company tooling engineers. Tool identification, requirements, application, unit cost, and floor space requirements are shown in Table 5-1 for the production rates of 2 per year and 20 per year.

(# mo-070 }

MANUFACTURING PROCESSES		Q.C. Labor (M/Hr)		NØ.	TØTAL CØST (K\$)
1000 TANK ASSEM 1001 UNPACK FWD DØME & INSP 1002 UNPACK LØX DØME & INSPECT	0	20 40	1 O 1 O	2	0 • 45 0 • 75
1003 MOVE DOME&LX TK TO ASM TWR	0	0	20	2	0.3
1004 WELD CYL TØ LX TK(INT)&INSP 1005 WELD CYL TØ LX TK(EXT)&INSP	0 • 62 0 • 62	52	172 52		4.88 2.18
1006 WELD CYL TØ FWD DØME(INT)		112	1 42		4.43
1007 WELD CYL TØ FWD DØME(EXT)	0.62	102	102	2	3 • 68
1008 HYDRØSTATIC TEST	0	200	400	2	9
1009 DEGREASE		- 50	100		2.25
1010 WEIGHT & STØRE	0	20	125	2	2.175
1020 LØX TANK ASSEM					
1021 MATE C BLK/A-DØM: SEAL & INSP	1.98	156	160	1	6.72
1022 X-RAY ALL WELDS, WEIGH	0.28	20	40	1	1 • 18
1023 BØX&PACK FØR SHPG TØ ASY FAC	0	5	10	1	0.225
1030 AFT DØME ASSEMBLY					
1031 VRFY MATL FØR AFT DØME-9 SEG	S 3.5	0	0	1	3 • 5
1032 FØRM 9 SEGMENTS & INSPECT		102	180	i	4.23
1033 RØUGH TRIM, CLN, AGE, INSP&STRT		18	89	_	1 • 605
1034 MASK, CHEM MILL, DEBURR & INSP	7.8	90	0	1	9.15
1035 ANØDIZE, TRIM, & INSPECT	′ 0	18	27	1	0.675
1036 WEIGH 9 SEGMENTS & STORE	0	5	9	1	0.21
1037 WELD SEGS, STATION TRIM & INS		184	124	1	6
1038 WELD JAMB & INSPECT 1039 WELD STUDS, FITTINGS & INSPEC	0.28	13 19	18 23	1 1	0.745 0.85
1040 GRIND ALL WELDS, DIE-PEN INSP		60	200	-	3.9
1041 PERFORM LEAK CHECK, WEIGH	0.1	10	30	1	0.7
1042 X-RAY ALL DOME WELDS, WEIGH		-	4		1.785
1043 TRANSP TØ LØX TANK AREA	0	5	10	1	0.225
LOSO COMMON DUR VIDAD ACCOM					
1050 CØMMØN BULKHEAD ASSEM 1051 ETCH CLEAN AFT DØME	0.0		20		0 075
1052 ETCH CLEAN FWD DØME	0•2 0•2	15 15	30 30	1	0.875
1053 FIT&BND HNYCMB & INSPECT		400	1600	1	33.8
1054 BUT WLD Y RNGS LK CHK&INSP	0.64		42	ì	1.6
1055 MACHINE RING BUT WELDS	0	20	80	1	1.5
1056 XRAY WLD, ULT/INSP DØM, WGH&ST	R 4.24	30 .	10	1	4.84
1040 CAMMAN DIVUD FUD DAME					
1060 COMMON BLKHD FWD DOME 1061 VRFY CMN BLKHD FWD DOM MATL	1.6	0	0	1	1 • 6
1062 FORM 9 SEGMENTS & INSPECT	0	102	180	1	4.23
1063 RØUGH TRM, CLN, INSP & STØRE	ŏ	18	89	1	1 • 605
1064 MASK, CHEM MILL, DEBUR&INSP	3.8	90	0	i	5.15
1065 ANØDIZE, TRIM & INSPECT	0	27	36	1	0.945
1066 WEIGH 9 SEGMENTS & STØRE	0	5	9	1	0.21
1067 WELD SEG STATION TRM &INSP	1 • 38	180	124	1	5.94
1068 WELD DOME TO RING & INSPECT	0.64	26	34	1	1.54
1069 WLD CENT \$CAP TO DOME; INSP 1070 GRIND ALL WELDS, DIE-PEN INSP	0 28	13 60	20 200	1	0.775
1070 GRIND ALL WELDS DIE PEN INSP	0 • 46	0	0	1	3•9 0•46
1072 PERFØRM LEAK CHK, WEIGH, STØRE	-	15	40	1	0.925
			-	•	

Figure 5-2. Manufacturing Processes for Propellant Tank Structure (Element 2) State-of-the-Art Manufacturing Line (Line 1) (Sheet 1 of 3)

1000	RING-FWD DOME-COMMON BULK					
		0.35	0	0	1	0.35
	FORM & INSPECT	0.33	14	26	1	0.6
	TRM. CLN. AGE & INSPECT	0	4	14	1	0.27
		0			-	-
	ANODIZE, WEIGH & STORE	-	4	8	1	0 • 18
	WLD SEG, STRAIGTEN RNG&INSP	0	40	80	1	1 • 8
1086	MILL RNG FACE, INSP&STORE	0	25	50	1	1 - 125
	COMMON BULK AFT DOME					
		1 • 7	0	0	1	1 • 7
	FØRM 9 SEGMENTS & INSPECT	0	102	180	1	4.23
	RØUGH TRIM, CLN, AGE, INSP&STR	0	18	89	1	1.605
	MASK, CHM MILL, DEBUR & INSP	3.2	90	0	1	4.55
	ANØDIZE, TRIM & INSPECT	0	27	36	1	0.945
1096	WEIGH 9 SEGMENTS & STØRE	0	5	9	1	0.21
	WLD SEG STATION TRM&INSP	1 • 38	180	124	1	5.94
1098	WLD DOME TO RING & INSPECT	0.64	26	34	1	1 • 54
1099	WLD CENT SCAP TO DOME; INSP	0.28	13	20	1	0.775
	GRIND ALL WELDS, DIE-PEN INSP	0	60	200	1	3.9
1101	X-RAY ALL WELDS	0 • 46	0	0	1	0 • 46
	PERFØRM LEAK CHK, WEIGH, STØRE	0 • 1	15	40	1	0.925
2010	RING-AFT DØME CØMMØN BULK					
2011	VRFY MAT FØR 1AFT DØME Y RNG	0.35	0	0	1	0.35
2012	FØRM & INSPECT	0	14	26	1	0.6
	TRIM, CLEAN, AGE & INSPECT	0	4	14	1	0.27
	ANØDIZE, WEIGH & STØRE	Ō	4	8	1	0.18
	WLD SEG, STRAIGHTEN RNG&INSP	-	40	80	1	1.8
	MILL RNG FACE, INSPECT& STORE	Õ	25	50	i	1.125
20.0	THE THE PROPERTY OF THE	J			•	
2020	TANK CYLINDER					
	VRFY MAT FOR 7 TANK SEGMEN	31	0	0	1	31
	MILL EDGES	6.5	28	56	1	7.76
	MILL WAFFLE	32 • 5	28	56	ī	33.76
	ULTRASONIC INSPECT	13.85		0	1	13.85
	BX PCK 7 SEG-SHP TØ ASM FAC	0	7	14	i	0.315
	UNPK, TRNSP TØ WK AREA(7 SEG)	0	7	14	2	0.315
	DRILL SPREADER BAR HØLES	0	14	28	2	0 • 63
	HEAT TREAT (ANNEAL)	0	0	14	2	0.21
	FØRM 7 SKINS, CLN, AGE, INSP	0	98	203	2	4.515
	ANDZ, TRM, WGH, INSTL SPR BARS	0	31	45	2	1.14
	WELD 7 SEGMENTS & INSP	2•2	106	212	2	6.97
	UNPACK 2 RINGS	0	5	10	2	0.225
	TRIM CYL & WELD RINGS	1.27	34	66	2	2.77
2044	XRAY ALL WLDS, WEIGH &STØRE	2.6	20	80	2	4.1
2050	RING TANK CYL					
	VRFY MAT FOR 2 RNGS(CYL)	0.7	0	^	•	0.7
		0.7	0	0	1	0 • 7
	FØRM 8 SEG & INSPECT	0	28	52	1	1.2
	TRIM, AGE, INSPECT	0	8	28	1	0.54
	ANODIZE WEIGH & STORE	0	8	16	1	0.36
	WLD SEG, STRTN 2 RNGS&INSP	0	80	160	1	3 • 6
	MILL RNG FACE, INSP, WEIGH	0	45	90	1	2.025
2057	BX&PK 2 RGS-SHP TO ASM FAC	0	5	10	1	0.225

Figure 5-2. Manufacturing Processes for Propellant Tank Structure (Element 2) State-of-the-Art Manufacturing Line (Line 1) (Sheet 2 of 3)

2060	FWD DØME					
2061	VRFY FWD DØME SEG MATL	1 • 8	0	0	1 .	1.8
2062	FØRM 9 SEG & INSPECT	0	102	180	1	4.23
2063	RGH TRM, CLN, AGE, INSP, STR	0	18	89	1	1.605
2064	MASK, CHEM MILL, DEBUR, INSP	3	90	0	1	4.35
2065	ANØDIZE, TRIM & INSPECT	0	18	27	i	0.675
2066	WEIGH 9 SEGMENTS & STØRE	0	5	9	1	0.21
2067	WELD SEG, STAT'NRY TRM, INSP	1 • 38	184	124	1	6
2068	WELD JAMB & INSPECT	0 • 28	13	18	1	0.745
2069	WELD STUDS&FITTINGS &INSP	0.22	19	23	. 1	0.85
2070	GRIND ALL WELDS, DIE-PEN INSP	0 '	60	200	1	3.9
2071	PERFORM LEAD CHECK	0 • 1	10	30	1	0.7
2072	X-RAY ALL DOME WELDS, WEIGH	0 • 3	95	4	1	1.785
2073	BX&PK FWD DØM; SHP TØ ASY FAC	0	5	10	1	0-225
	N.		PLANT 1	PLANT 2		TØTAL
MANU	FACTURING PRØCESSES 0.5 YR CØST	-(KS)	270.31	50.97		321.28
	MATERIAL COST-(KS)		133-27	8 • 55		141.82
	QUALITY CONTROL LABOR-(M/HRS)		3404	1023		4427
	-(K\$)		•	15.345		66 • 405
	MANUFACTURING LABOR-(M/HRS)		5732	1805		7537
	-(K\$)	8	5 • 98	27.075		113-055

Figure 5-2. Manufacturing Processes for Propellant Tank Structure (Element 2) State-of-the-Art Manufacturing Line (Line 1) (Sheet 3 of 3)

Table 5-1 PROPELLANT TANK STRUCTURE

	님	GE.	AT(SQ. FOC	260	1000	500	600 1200 1000	1000	1000	1000	100
	TOOL			20\YEAR	821	1 10		- 	11 22 22 21	2 10	4 1.	4440
	* PER	PROD		5\YE AR							81	1221
			BLY	S VE VB								
				TANK								
		~	ER.	YSSA								
	z	TANK	CYLINDER	RING		××		×			×	× ×
	ATIO		ک ک	CAF		××		×			×	× ×
	APPLICATION	AD.		YSSA								
ST		LKHE	16	T∃A		××		×			×	××
00		N BU	RING	FWD		××		×			×	X X
N N		COMMON BULKHEAD	ME	TAA	××	××	×××	×××	×× ×	×	×	××
NO		CON	DOME	EMD	××	××	×××	×××	×× ×	×	×	××
CATI		VE.		T∃A	××	××	×××	×	×× ×	×	×	××
APPLI NE #		DOME	1	FWD	××	××	×××	×	×××	×	×	××
MENTS/		.	IND	COST \$/K	650.0 30.0 30.0	200.0 50.0	20.0 5.0 1.0	125.0 50.0 50.0	20.0	25.0	25.0	0.8.8.8.
TOOL REQUIREMENTS/APPLICATION/UNIT COST	TOOL IDENTIFICATION			NAME	Stretch Press Stretch Form Die No. 1 Stretch Form Die No. 2	Heat Treat Oven (12'x12'x40') Quench Tank (12'x12'40')	Dome Segment Trim Tool Dome Segment Cutter Work Stand	Dome Rotating Tool Etch Cleaning Tank (25'x25'x12') Etch Cleaning Tank (12'x12'x40')	Spray Booth Neoprene Maskant Spray Maskant Cut Stencil No. 1 Maskant Cut Stencil No. 2 Maskant Cut Stencil No. 3 Maskant Cut Stencil No. 3	Chem Mill 12'x12'x12'	Anodize 12'x12'x40'	Load Cell No. 1 Hoist Spreader Bar No. 1 Hoist Spreader Bar No. 2 Hoist Spreader Bar No. 3
				o O	100 101 102	$\frac{110}{111}$	120 121 122	$\frac{130}{131}$	140 141 142 143 144 145	150	160	170 171 172 172

Table 5-1 (Continued)
PROPELLANT TANK STRUCTURE

	7	CE *	ATC	ALLOWA SQ. FOC	1500	500	1 1	1800	1 1 1	2000	1000	100	1000	1200	9 1	ı
	*PER TOOL			20\YEAR		ကက	ကက	8 8	01 01 01	0101	44	4 2	9			Н
	*PE	PROD		S√YEAR						11			63		-	-
		1	BLY	TANK ASSEM							+					
			~	YSSA					- 							-
	7	TANK	CYLINDER	віис										<u> </u>	<<	
	TION	1	CYL	CAI					_			· · · · · · · · · · · · · · · · · · ·				
	APPLICATION	AD		YSSA					_		××	××				
15		LKHE	<u>S</u>	T∃A										, i	<<	×
8		N BUI	RING	FWD										<u>.</u>	××	
N N		COMMON BULKHEAD	ME	T∃A	××	××	××	×	×××		××	××		×××		
<u>N</u> 0		COA	DOME	FWD	××	××	XX	×	×××		××	××		×××		
ZAT		DOME		T4A	××	××	××	××	×××	××	××	××	×			
APPL INE #		00		EMD	××	××	××	××	×××	××	××	××	×			
MENTS.			L N O	COST \$/K	100.0	30.0	10.0	30.0	$\begin{array}{c} 5.0 \\ 7.0 \\ 18.0 \end{array}$	7.0	$\frac{15.0}{18.0}$	2.8	4.0	12.0 18.0 18.0	20.0	2.0
TOOL REQUIREMENTS/APPLICATION/UNIT COST	TOOL IDENTIFICATION			NAME	Meridian Welder Clamn Bar	Welding Head Stand	Station Trimmer X-ray Unit	Jamb Ring Welder Stand Jamb Clamps	Jamb Ring/Dollar Opening Trimmer Jamb Ring/Dollar Welder X-ray	Pick Up Positioner Stud Welder Head	X-ray Holding Fixture X-ray Unit	Spreader Bar No. 4 (Hoist) Load Cell No. 2	Transport Fixture	Dome to Ring Weld Fixture Welding Head X-ray Unit	Stretch Press Ring Die No. 1	
				o V	180	182	184	190 191	192 193 194	200	210 211	220 221	230	240 241 242	250 251	252

Table 5-1 (Continued)
PROPELLANT TANK STRUCTURE

100	/CE E *	J8∆	MOJJA	ı	100	400	1 1	2000	1 1	l I	6400	1 1	1	1 0	200		1000	1 0	1000	20	1000
PER T	ao	УВ	20/YEA	1	Н				-		4 -	4 4	4.	4 4	4 4		থ	~ ~		~ 60	1 9
*				1	-		. 		·		н.	٠.	ı 				-				4 67
	, 												···						40 - 10		
	8	£ _	YSSA																		
z	Ž Ž) } }	віис	×	×	×	××	×		×											
4TIO	}	5	CAF											>	4 ×						
PLIC	AD		YSSA								××	< ×	×	× >	< ⋈		×	×	××	××	: ×
AP	LKH	ပ္ခ	T∃A		×	××	×	×	×	4											
	N S	<u>8</u>	EMD		×	××	×	×	×												
	MWO	WE_	Τ∃Α																		×
	00	8	FWD																		×
	ME		T∃A																		×
	8		EMD														*******			***	×
		TNO TNO TNO TNO TNO TNO TNO TNO TNO TNO	\$\ \ \	2.0		20.0	$\frac{1.0}{10.0}$	350.0	12.0	12.0	40.0	8.0	2.0	0.2.0	79.0		8.0	18.0	12.0	1.0	10.0
TOOL IDENTIFICATION				Ring Die No. 3	Ring Extrusion Cutter	Ring Weld Fixture Bing Weld Fixture Set No.	Ring Weld Fixture Set No. Welding Head					Vacuum Bag				<u> </u>	Weld Fixture				7
		Ç		253	260	270	272	280	281	283	290	292	293	294	687	300		301	310	320 321	330
		ION *PER TOC APPLICATION *PER TOC DOME COMMON BULKHEAD TANK *PROD *	TOOL IDENTIFICATION *PER TOO DOME COMMON BULKHEAD TANK NAME UNIT DOME RING CYLINDER S S S S S S S S S S S S S S S S S S S	ION DOME COMMON BULKHEAD CYLINDER \$\\$(\frac{1}{2}\) \text{COST} \\ \frac{1}{2}\) \\ \frac{1}{2}\] \\ \frac{1}{2}\) \\ \frac{1}{2}\] \\ \fr	TOOL IDENTIFICATION DOME COMMON BULKHEAD TANK DOME CYLINDER CYLINDER S/K Ring Die No. 3 2.0 TOOL IDENTIFICATION APPLICATION APPLICATION APPLICATION APPLICATION APPLICATION TANK F R R R R R R R R R R R R R R R R R R	TOOL IDENTIFICATION APPLICATION *PER TOO NAME LONIT DOME COMMON BULKHEAD TANK PROD * \$\script{K}\$ \$\script{K}\$	TOOL IDENTIFICATION SOURCE COMMON BULKHEAD TANK PROD EVENT COST COST	TOOL IDENTIFICATION SOME COMMON BULKHEAD TANK PROPERTOR PROPERTOR	TOOL IDENTIFICATION *PER TOOL IDENTIFICATION	TOOL IDENTIFICATION TANK TANK	TOOL IDENTIFICATION TAOL IDENTIFY TA	TOOL IDENTIFICATION	TOOL IDENTIFICATION	TOOL IDENTIFICATION APPLICATION APPLIC	TOOL IDENTIFICATION	TOOL IDENTIFICATION TANK TOOL IDENTIFICATION TOOL IDE	TOOL IDENTIFICATION TANK TANK	TOOL IDENTIFICATION TANK TANK	TOOL IDENTIFICATION POME COMMON BULKHEAD TANK PER TOOL IDENTIFICATION POME COMMON BULKHEAD TANK PER TOOL IDENTIFICATION POME RING CYLINDER POME RING PAGE PAGE	TOOL IDENTIFICATION APPLICATION APPLIC	TOOL IDENTIFICATION APPLICATION

Table 5-1 (Continued)
PROPELLANT TANK STRUCTURE

			•										
	70C	CE *	918, ATC	ALLOWA SQ, FOC	2000	1500	1 1	2000	500	1 Set 2 Sets 500 1 2 1200 1 2 -	1000 - 2000	0 1	2000
	*PER TOOL	PROD		20√YEAR	ကကကက	Н	44	Н	10 10	2 Set 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	010101	4.0	၁
	*			2/YEAR		-	01 01	Н		1 Set		12	
		,	BF.	TANK TANK									××××
			ER	YSSA						×××	××××	××	
	z	TANK	CYLINDER	віие									
	APPLICATION		Σ	CAF		×	××	×	××				
	PLIC	:AD		YSSA	××××	···					····		
ST	ΑP	LKHE	RING	T∃A								***************************************	
100		N BU	RIP	EMD								·	
N N		COMMON BULKHEAD	DOME	Τ₹Α					····	- No.			
O N		Ö	Od	FWD									
LICA]		DOME		Τ 1 Α					***************************************				
APPI INE		8		EMD		·····	······································		·		****		
EMENTS,			LND	COST \$/K	35.0 1.0 2.0 18.0	500.0	1.0	150.0	35.0 5.0	2.8 45.0 18.0	75.0 5.0 18.0 18.0	$\begin{array}{c} 1.5 \\ 2.0 \end{array}$	200.0 12.0 18.0 18.0
TOOL REQUIREMENTS/APPLICATION/UNIT COST LINE #1	NO				PLANT 1			→ + + + + + + + + + + + + + + + + + + +	PLANI Z				
	TOOL IDENTIFICATION			NAME	LOX Tank Weld Fixture Drill Drill Jigs Welder	Skin Mill (10'x40')	Drill Template Power Drill	Brake - 40'	Segment Trim Fixture Power Cutter	Spreader Bars Longitudinal Weld Fixture Welder Head	End Trim/Ring Weld Dolly Weld Fixture Welder Head X-ray	Hoist Spreader Bar Load Cell	Tank Assem Tower Heat Blanket Welder Head X-ray
				° ON	340 341 342 343	350	360 361	370	380 381	390 391 392	400 401 402 410	420 421	430 431 432 433

Table 5-1 (Continued) PROPELLANT TANK STRUCTURE

	ZOL	CE E *	J8. ∆TC	ALLOWA	ı	2000	1000	10
	*PER TOOL	PROD		SO√YEAR	9	9	9 9 9	φ
	*	PRO		S\YEAR	7			ო
		,	8	TANK TANK	×	××	×××	
		6	ži l	YSSA				
	z	TANK	ב ב	віис				×
	APPLICATION	. {	5	CAF				×
	PLIC	AD		YSSA				
ST	Ą	COMMON BULKHEAD	RING	T∃A		***************************************		×
1 CO		N N	R	FWD		÷		×
Nn/		MWO	DOME	T∃A				×
NOI.		Ö	8	FWD				×
ICAT	ĺ	DOME		TAA				×
APPI INE #		8		FWD				×
EMENTS, L			E N N	COST \$/K	50.0	100.0	40.0 10.0 2.0	1.0
TOOL REQUIREMENTS/APPLICATION/UNIT COST	TOOL IDENTIFICATION			NAME	Hoisting Yoke and Crane	Hydrostatic Test Equip Degreaser	Tank Dolly Hoist Yoke Load Cell	Weld Grinder (Portable)
				o Z	434	440 441	450 451 452	460

5.1.1.4 Manufacturing Plant

In the determination of cost of the facilities to house the two state-of-the-art manufacturing lines, one having a production rate of 2 per year and the other 20 per year, it was assumed that each line would have a manufacturing plant (plant 1) and an assembly plant (plant 2). It was estimated that plant 1 for both lines would require 30-foot ceilings and plant 2 for both lines would require 100-foot ceilings. These estimates were based upon the size of subassemblies, the tank assembly, tooling requirements, and overhead bridge crane clearances.

The floor area for each of the buildings was established based upon providing facilities for the number of personnel required and summarizing the floor area requirements for the tooling and adjusting for other elements as shown in Tables 5-2 and 5-3.

In arriving at the total cost of each of the manufacturing plants, land cost based upon 1969 real estate values of land designated commercial, near transportation, in the vicinity of Daytona Beach, Florida were set at \$12,000 per acre plus \$18,500 per acre for improvement (access roads, water, etc.). Other cost items, including \$18 per square foot of floor area, were estimated based upon information contained in Reference 2 and information provided by the General Electric Company facilities section. The total cost of each of the manufacturing plants is summarized in Table 5-4.

Table 5-2

Propellant Tank Structure (Element 2) and State-of-the-Art (Line 1)

Manufacturing Plant (Low Bay - 30-Foot) Floor Areas

PRODUCTION RATE	2 Per Year	20 Per Year
NO. OF PERSONNEL*	250	750
	Floor Area	Floor Area
ITEM	Square Feet	Square Feet
Machine and Tool Area (from Table 5-1 + 50%)	54,363	184,384
Center Aisle and Entry Area	18,250	40,250
Storage Areas—Materials	12,200	39, 200
Eating Area	3,750	4,750
Loading Dock Extensions	2,000	5,000
Office Space	1,000	1,300
Dispensary	1,120	1,120
Toilet Facilities	600	800
Fork Lift Parking Area	90	120
Clean Room Facility and Compressor Area	29,362	46,666
Vending Machine Area	45	60
Total	122,780	323,650

*For Facility Sizing Only

Table 5-3
Propellant Tank Structure (Element 2) and State-of-the-Art (Line 1)
Assembly Plant (High Bay - 100-Foot) Floor Areas

PRODUCTION RATE	2 Per Year	20 Per Year
NO. OF PERSONNEL*	200	600
ITEM	Floor Area Square Feet	Floor Area Square Feet
Machine and Tool Area (from Table 5-1 + 50%)	21,300	78,660
Center Aisle and Entry Area	18,000	45,000
Storage Area—Materials and Assemble Vehicle	45,660	100,000
Eating Area	3,100	4,100
Loading Dock Extension (2)	5,000	12,500
Office Space	1,000	1,100
Dispensary Area	1,120	1,120
Toilet Facilities	600	800
Fork Lift Parking Area	90	180
Transporter Area	1,900	3,800
Vending Machine Area	50	75
Total	97,820	247,335

^{*}For Facility Sizing Only

In arriving at the total cost of each of the assembly plants, land cost based upon 1969 real estate values of land designated commercial near transportation, including the intracoastal waterway, in the vicinity of Cape Kennedy (north entrance) were set at \$14,500 per acre plus \$18,500 per acre for improvements (access roads, water, etc.). Other cost items including \$60 per square foot of floor area were estimated based upon information contained in Reference 2 and information provided by the General Electric Company facilities section. The total cost of each of the assembly plants is summarized in Table 5-5.

5.1.1.5 Transportation

Transportation cost estimates include the costs encountered in moving subassemblies and components from plant 1 to plant 2. The basic elements of cost are re-usable shipping containers and the actual hauling charges. For this estimate it was assumed that the distance from plant 1 to plant 2 was 100 miles. It was further assumed that for a production rate of 2 per year, one set of containers would be required while 3 sets of containers would be necessary for a production rate of 20 per year.

Table 5-4

Land Acquisition and Building Construction Requirements/Cost Propellant Tank Structure (Element 2) and State-of-the-Art Manufacturing Line (Line 1) Plant No. 1—Manufacturing (Low Bay - 30 Feet)

2 Per Year		20 Per Year	
Item	(\$) Cost	Item	(\$) Cost
Land—4.5 Acres (Including Required Improvements)	137, 250	Land—8.25 Acres (Including Required Improvements)	251,625
Sewage Plant	247,000	Sewage Plant	280,000
Main Plant ^X (122, 780 square feet)	2,210,040	Main Plant ^x (323, 650 square feet)	5, 825, 692
Outside Storage Sheds	20,000	Outside Storage Sheds	47,500
Dock Requirements	8, 500	Dock Requirements	11,000
Dispensary	30,000	Dispensary	32,000
Bridge Crane (10-Ton)	30,000	Bridge Cranes (2 10-Ton, 1 5-Ton)	75,000
Wall Partitions (Portable), Doors, Storage Bins, etc.	68,000	Wall Partitions (Portable), Doors, Storage Bins, etc.	150,000
Toilet Fixtures	11,400	Toilet Fixtures	14,500
Office Furniture	4,000	Office Furniture	2,000
Air Lines, Compressor and Fire Protection System*	100,000	Air Lines, Compressors (3), and Fire Sprinkler System**	200,000
Clark Fork Lift Trucks (3)	15,000	Clark Fork Lift Trucks (4) and Tugs (2)	33,000
Total	2,881,190	Total	6,925,317

^{*} One Clean Room Included ** Two Clean Rooms Included x Building—Temperature Controlled—Air Conditioned, Heated and Insulated—\$18 per square foot

Table 5-5

Land Acquisition and Building Construction Requirements/Cost Propellant Tank Structure (Element 2) and State-of-the-Art Manufacturing Line (Line 1) Plant No. 2—Assembly (High Bay Type - 100 Feet)

2 Per Year		20 Per Year	
Item	(\$) Cost	Item	(\$) Cost
Land—3.75 Acres (Including Required Improvements)	123,750	Land—6.75 Acres (Including Required Improvements)	222,750
Sewage Plant	200,000	Sewage Plant	230,000
Main Plant ^x (97,820 square feet)	5, 869, 300	Main Plant ^X (247, 335 square feet)	14,840,100
Outside Storage Sheds	20,000	Outside Storage Sheds	47,500
Dock Requirements	8,300	Dock Requirements	18,000
Dispensary	30,000	Dispensary	32,000
Bridge Crane (20-Ton 30-Foot Span)	000,000	Bridge Crane (2 20-Ton 30-Foot Span, 1 10-Ton and 1 5-Ton)	165,000
Wall Partitions (Portable) Doors (Elec. Operated) and Storage Bins, Fixtures, etc.	83,000	Wall Partitions (Portable) Doors (Elec. Operated) and Storage Bins, Fixtures, etc.	155,000
Toilet Fixtures	11,500	Toilet Fixtures	14,500
Office Furniture	4,000	Office Furniture	2,000
Air Lines, Compressors, and Fire Protection System	70,000	Air Lines, Compressors, and Fire Protection System	140,000
Fork Lift Trucks (3) and Tugs (2)	23,000	Fork Lift Trucks (5) and Tugs (2)	38,000
Total	6, 502, 850	Total	15,907,850

x Building—Temperature Controlled—Air Conditioned, Heated and Insulated—\$60 per square foot

All transportation costs, including the cost of the containers, were estimated based upon the size and weight of the components to be carried. The container estimates were prepared by the Apollo Systems shipping department and the hauling charges were estimated by a local cargo carrier. Containers costs are shown in Table 5-6.

The estimated hauling cost, one way with containers full, and a return trip with the containers empty, is shown in Table 5-7.

Table 5-6
Shipping Container Cost
Propellant Tank Structure (Element No. 2)

	Product 2 Per Year				
Container Identification	Number Req/Cost	Number Req/Cost			
LOX Tank 22' x 22' x 15' - bolted Sections, shock mounted, Cross braced structure, webb Belt tie downs - wt = 2900 lbs.	1/\$8,600	3/\$25,800			
Upper Dome 22' x 22' x 13' - same as above - wt = 2200 lbs.	1/\$7,000	3/\$21,000			
Rings (cyl, in pairs) 22' x 22' x 2' - same as above - wt = 1100 lbs.	1/\$4,400	3/\$13,200			
Cylinder Sections 35' x 10' x 6' - same as above - wt = 2050 lbs.	1/\$4,100	3/\$12,300			
Total Cost (Non-Recurring)	1 set/\$24,100	3 sets/\$72,300			

Table 5-7

Transportation Cost Summary—Leased Mover
Plant No. 1 to Plant No. 2 One Way Distance - 100 Miles
Propellant Tank Structure (Element 2)

Containers	Cost Full One Way	Cost Empty One Way	Round Trip Per Tank
LOX Tank Upper Dome	\$1,500	\$ 600	
Rings (Cyl) Cylinder Sections	1,300	500	
Total Cost (Recurring)	\$2,800	\$1,100	\$3,900

5.1.1.6 Near-Term Pre-Manufacturing Operations

Table 5-8 presents the near-term pre-manufacturing operations non-recurring and recurring man-hour requirements. These man-hour requirements are the result of estimates developed using manufacturing consultants within the General Electric Company and through visits with aerospace manufacturers. The non-recurring man-hours are estimated on a total program basis and are subject to a 40-percent recycle factor during the life of the program for updating the re-evaluation of functions. The recurring man-hours are on a per-vehicle basis. Both the non-recurring (including the 40-percent recycle factor) and recurring man-hours are shown in Table 5-8.

5.1.1.7 Summary

The detail cost elements for production rates of 2 and 20 tanks per year are shown in Tables 5-9 and 5-10. A summary for each cost calculation is shown on the respective tables.

Table 5-8

Near-Term Pre-Manufacturing Operations for Propellant Tank Structure (Element 2) State-of-the-Art Manufacturing Line (Line 1)

NEAR-TERM PRE-MANUFACTURING ØPERATIØNS

NON-RECURRING COSTS

	M/HRS	TOTAL COST
		(KS)
800 REVIEW PROGRAM DIRECTIVES	700.	10.5
8 10 MFG. PRELIMINARY SCHEDULES	700.	10.5
820 PRØDUCIBILITY STUDIES	9380.	140.7
830 IDENTIFY/ØRDER LØNG LEAD ITEMS	1890.	28.35
8 40 ACCUMULATE/REVIEW ENGR & QC DØCUMENT.	1890.	28,35
850 DEVELOP SUB-ASSEMBLY & PARTS SCHEDULE	9380.	140.7
860 MFG. PLANNING OPERATIONS	14000.	210
870 DESIGN/PRØCURE TØØLING	22400	336
80	4200•	63
	8 8 8 8 8 8	40 40 40 40 40 40 40 40 40 40 40 40 40 4
NØN-RECURRING TØTALS	64540	1 • 896
RECURRING COSTS		
900 EXPEDITE IN-HØUSE/PURCHASE PARTS	800	٠ ي
910 REVIEW PROGRESS WITH PROGRAM OFFICE	200.	ო
RECURRING TOTALS	1000	S
TOTAL RECURRING AND NON-RECURRING PRE-MFG. COSTS=	IFG. CØSTS=	983.

Table 5-9 Manufacturing Cost Analysis

~		-, -			<u> </u>				······································								!		1		•		· · · · · · · · · · · · · · · · · · ·						
					Tetta. Cest	3.5 4.6 9.6 9.6 9.6 8.6 8.6		S	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	25. 45. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5			7.8 9.9	88.9 13.4 13.4	13.5 12.6 91.5 6.75	2.1 8.5 39 7	40 17.85 120 2.7 72930 3052.55	3.95.)		TØTAL CØST (KS)	3395.1 6972	9 68 • 1 1 50 3052 • 55	14538.4						
					MFG. LABGR	340 200 2000 0	0 260 80 0	200	5 5 6 0 5 6 0 5 6 0 5 7 6 0	2 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 1	280 280 160 200 200	320 460	350 350 350	2.00 2.40 0.00 0.00 0.00	96 180 230 2000 300				FRE-MFG. Labør (m/hr)			74540-						
					LABBR CM/HR)		0 40 40 60 60 60			980 316 340		80 80 80 450	160	240 300 300 300	300 300 180	50 130 600 100	3. 950 0 60 1369.7 39260	588.9				-	^						
					MAT 'L CRST (KS)	4 8 9 4 1 4 8 9			3255 136.5 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.					୭ ପ ଦ୍ୟାଧ୍ୟ କ	:	J	SULTS	MFG. LABOR (M/HR)		72930	72930						
						INSP	SING.	SE SE		7	Ę	e. x	IAPE	2 2 1	1+1NSP 1+1NSP 1-10RE 1SP	INSP	A/A .	[CKS)	SUMMARY OF RESULTS	0.C. LABGR (M/HR)		39260	39260						
					8 22	WELD DONE TO RING+INSP WELD CENTER CAP TO DOME+INSP GRIND ALL WELDS+DYE-PEN INSP X-RAY ALL WELDS+DYE-PEN PERFORM LEAK CHECK+WGH+STØRE	2010 RING:A/D:COBMON BULKHEAD 2011 VERIFY MTL FOR 1 A/D Y RING. 2012 FORWARINSP 2013 TRIM-CLEAN+AGE+INSP 2014 AMDIZE-WEIGH-STORE	NSP+STOR	ERN CA	PHEAT TREATGANNEAL) FORTH T SEATCHANNEAL) FORTH T SKINS-CLN-AGE-INSP ANGDIZE-TRIN-4GH-INSTL S/B(S) I WELD SEG(S)-INSP 3 TRIN CYL-4-AGE-INSP 3 TRIN CYL-4-AGE-INSP	RINGSCO	TRIMAGE-INSP 4 ANDDIZE-WEIGH-STORE 5 WELD SEG-STRIN RINGS-INSP 6 MILL RING FACE-INSP-WEIGH 7 MOVE DINGS TO ALA	WE DUNE B REG SH INSP	NCH+INSP PE+INSP NCH+INSP	SIA IKIN G+DEBURR GE+INSP+ EBURR+IN SP	EZ #EIGHYSIGNE 33 WELD JAMBLINSP 14 WELD STUDS+FITTINGS+INSP 75 GRIND ALL WELDS+DY E-PEN INSP 66 FERFORM LEAM CHECK	WE1GH E F/D T0	LABOR COST	SUMMA	MAT'L CØST (KS)		1369.7	1369.7						
					ANUFACTURING PRACESSES	E TØ RIN TER CAP L WELDS+ L WELDS	COMMON TL FOR 1 P AN+AGE+I WEIGH+SI	G FACE+1	ES FLE PATT IC INSP	ATCANNEA AINS+CLN TRIB+WGH (S)+INSP	K CYL TL FØR 2	FINSP WEIGH+ST STRIN R	TL FOR F AW BLK I	VEAL+QUE	KM SPIN+ C/C GPN TREAT+A M MILL+D	38E 3+INSP DS+FITTI L WELDS+ LEAK CHE	L WELDS+	3		£ 5 5	TOOLING FACILITIES FRE-MANUFACTURING	16 CØST 1ST	¥						
					ACTURING SESSES	WELD DOMINELD CENTRING ALL	SING:A/D JERIFY M GRM+INS IRIM+CLE	ALL SECTSIKE ALL RING FAC	ILL EDGILL WAF	EAT TRE WANDIZE+ NODIZE+ FLD SEG	ERIFY M	RIM+AGE-NODIZE+	FWD DOME VERIFY N SCRIBE+S SHEAR SP	LEAN+AN	INAL FOR UT+TRIM LN+HEAT MSK+CHE MSK+CHE	TEIGH+STA TELD JAMI TELD STUI TRIND ALI	-RAY ALI				TES UFACTURI	RECURRIN BRING CE	IN (KS)						
			· ****	f to the few months	AT ANY II	12521	0 1 0 0 0 0 0	2020	000000000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2020	2005	2060 J	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2067 2068 2069 2070 2070	2072 2073 2074 2075 2075	2077			je sake k	FACILITY FRE-MAN	RECL MFG. P.	LASSEK 1						
							.0												<u></u>										
					TOTAL COST (KS)		21.4 36.8 90 22.5 21.75	67.2		8.4 13.5 8.4 13.5 5.1			8•75 8•75 338			3.4 3.4 13.5 5.1				2.7 1.8 18 11.25	7.2	13.5	13.5 5.1 12.6 45.5 9.45						
					MFG. LABOR (M/HR)		1420 11420 1020 1000 1250	1600 400 100		320 600 320 600 540 540	270 270 90 180	230 2000 300 40	300 300 16000		0 320 460	350	340	200 2000 6 400	0 260	80 800 800 500	320	350 950 350	5.40 5.40 3.60						
					L G.C. LABOR (M/HR)	•	1120 1020 2000 500 500	8 1560 200 50		, 300 9.00 9.00 3.00 8.0			150 150 4000			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				400 250	. 160	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300 300 300 200						
					MAT'L COST (KS)	0000		19.8 2.8 0	9800	00000	_,		0 0 8°			00000				0000			0000						
						GWER + INSP	+1NSP +1NSP	+INSP	SHAPE	SP SP M+INSP RR+INSP P+STØRE		4 WELD SIUDSTAFITINGSTINSP GGRIND ALL WELDSTAFFPEN INSP 6 PERFORM LEAK CHECK 7 X-RAY ALL DOWE WELDSTWEIGH 8 TRANSPORT TO L/T A/A		+INSP +STORE	HAPE	S SPIN FORM TO SHAPE+1NSP C CLEAN-ANNEAL-HOUSENCH-1NSP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NSP	+1NSP INSP STORE	RING	G+INSP RE	E DØME HAPE	a. a.	7 FINAL FORM SPIN+STA TRIM-INSP 8 CUT+TRIM C/C OPNG-DEBURR-INSP 9 CLN+HEAT TREAT-AGG+INSP-STORE 0 MASK+CHEM MILL+DEBURR+INSP 0 CLEAN+ANØDIZE+INSP						
				. 15.	SES	O TANK ASSEMBLY I INSPECT FWD DOME E INSPECT LOK TANK 3 MAUE F/D-LL1 TO ASSY TON A WELD O'CL TO LICERS!	CEXTER)	LØX TANK ASSEMBLY MATE CYB+ALDISSEAL WELD+INSP X-RAY ALL WELDS+WEIGH MØVE IØ A/A	A/D IN REG	CCEANTAMENT-VOUNCHTINSP S SPIN FORM TO SHAPE-INSP C CLEAN-ANNEAL-VOUENCH-INSP 7 FINAL FORSSPIN-STA TRIM-IN 8 CUIT-TRIM C/C OPNG-DEBURR-II 9 CLN-HEAI TREAIT-AGE-INSP-SI	NSP	INGS+IN: +DYE-PE: ECK WELDS+WI T A/A	O COMMON BULKHEAD ASSY 1 ETCH CLEAN AFT DOME 2 ETCH CLEAN FWD DONE 3 FITHBOND HONEYCOMB+INSP	GS+LK CK TI WELDS DØME+WGH	F/D C/8 F/D TØ KEQ S +INSP	APE+INSP ENCH+INS +STA 1RI NG+DEBUR	DEBURR+I NSFECT NG+INSP	TO DOME +DYE-PEN ECK+WGH+	RING:F/D:COMMON BULKHEA VERIFY MIL FOR 1 F/D Y FØRM*INSP	TRIM+CLEAN+AGE+INSP ANGOIZE+WEIGH+STØRE WELD SEG+STRAIGHTEN RING+INSP MILL RING FACE+INSP+STØRE	AFT DOM	ENCH+INS APE+INSF ENCH+INS	+STA TRI NG+DEBUR AGE+INSP DEBURR+I NSP						
	3			i mē 6.	S PRØCES	SEMBLY FWD DUN LOX TAN D+L/1 TW L TO L/1	L 79 F/1 L 79 F/1 L 70 F/1 ATIC TES	K ASSEME B+A/D:SE LL WELDS A/A	E ASSY MTL FOR SAW BLK PIN FØRW	MNEAL+BU NNEAL+BU BRMSPIN+ M C/C BF	MB-INSP	UDS+FIIT LL WELDS LEAK CH LL DØME KT TØ L/	OLKHEAD AN AFT AN FWD HØNEYC	D Y RIN RING BU	OULKHEAD TIL FOR SAW BLK TIN FORM	INEAL+OU	M MILL+	TER CAP L WELDS L WELDS LEAK CH	CONMONITE FOR	AN+AGE+ WEIGH+S +STRAIG	ULKHEAD ITL FØR (AW BLK	NEAL+OU	IRM SPIN. C/C GP. TREAT+ M MILL+ GDIZE+II						
ANALYSI:	ELEMENT			F5. 3 G.C 15.	3 G.C 15.	3 G.C 15.	- 15.	- 15.	- 15.	- 13.	MANUFACTURING PROCESSES	TANK AS INSPECT INSPECT MUVE FY WELD CY	WELD CY WELD CY HYDROST DEGREAS	LØX TAN MATE C/ X-RAY A M9VE TØ	AFT DOM VERIFY SCRIBE+ SHEAR SI	SPIN FO CLEAN+A FINAL F CUT+TRI	CLEAN+AR WEIGH+S	WELD ST GRIND AL PERFORM X-RAY AL TRANSPOL	COMMON E LTCH CLE ETCH CLE FIT+BOND	BUTT WEL MACHINE X-KAY WE	COMMON EVERIFY NOT SERVICE + SERVINE	SPIN FØR CLEAN+AN	MASK+CHE CLEAN+AN	WELD CEN GRIND AL X-RAY AL PERFØRM	RING:F/D VERIFY W FØRM+INS	TRIM+CLE ANGDIZE+ WELD SEG MILL RIN	COMMON B	CLEAN+AN SPIN FØR CHEAN+AN	FINAL FO CUT+TRIM CLN+HEAT MASK+CHE CLEAN+AN
URING C9ST ************************************	IMPROVED MANUFACTURING LINE (LINE 2) ME: PROPELLANT TANK STRUCTURE (ELEMENT	Į.	NONE.				UNANUT E E E E E E E E E E E E E E E E E E E	1000 1000 1000 1000 1000 1000	1006	1020 1021 1022 1023	1030	1035 1036 1037 1038 1038	1041	1045	1050 1051 1052 1053	1055	1060	1065 1066 1067	1070	1073 1075 1075	1080	1063 1035 1035	1090	1095	1097 1098 1099 1100				
**************************************	TANK STA				TØTAL CØST (K S)	200 12 18 18 50 100	80 40 10 2 3395.7					TØTAL CØST (K\$)	6972					CØST 6) 5	35.35		-		50						
****	FROPELLANT	2 2	WHETHISM FABR THE WOLLMEL! 18TAL FROGRAM LENGIH: 5 YEAR	AATES-(S/HR): PRE-MFG	NG. UNITS							TØTAL CK	•					197AL (KS	28.50	146.7 210 336 63	9 68 - 1	120 30	!-						
i i i i i i i i i i i i i i i i i i i	INFROVE.	Propostion RAIE:	WHEIALION FAUM ING NOT 18tal Frøgram Length:	ATES-CA	COST	200 12 18 18 18 50 100	80 40 10 10 (K\$)											M/HRS 700.	700. 9350. 1890. 1890.	9380. 14000. 22400. 4200.	64540•	8000.	10000 -MFG. CØS1S≈						
199	STRUCTURE:	Predict	TOTAL F	LABBY I			6 CØST 0						rlan i				1 13				ØTALS STS		ALS 6 PKE-MF						
							L 100LIN						SSEMBLI			SNOI	NØN-RECURRING CØSTS		CUMENT.	CHEDULE	NON-RECURRING TOTALS RECURRING COSTS	TS FFICE	RECURNING TOTALS 19TAL RECURRING AND NON-RECURRING PRE						
							TØTAL						dinto & A			OPERAT	IN-KECURI	ř.S	LES ND ITEMS & OC DO	PARTS SO	NON-RECU	ASE FART GGRAM BI	RECUK						
						K CRANE T EQUIP										ACTUR1 NO	2 :	UI RECTI N	Y SCHEDL TUDIES LØNG LEF EW ENGR	EMFLY & PERALION TOULING ON & SEL		SEZPURCH ¥ITH PR	URRING A						
						SEM TOWE ANKET HEAD NIT G YOKE 8	ER ULLY OKE LL						10 03140			RE-MANUF		ITEM FRøGRAM	ELIMINAA BILITY S Y/ØRDEK ATE/REVI	SUB-ASS ANNING Ø PRUCURE EVALUATI		E IN-HØU	JTAL REC						
					T00L1NG =======	O TANK ASSEM TOWER 1 HEAT BLANKET 2 WELDER HEAD 3 X-RAY UNIT 4 HOISTING YOKE & CRANE O HYDROSTATIC TEST EQUIP	DEGREAS TANK DA HØIST Y LØAD CE					FACILITIES	OUR CONTROLL MENUTHUTURING & MANERBLY FLANT			MEAR-TERM PRE-MANUFACTURING @FEFATIONS		I	MFG. FR PRSDUCI IDENTIF ACCUMUL	O DEVILOR SUPERASSEMENT & PARTS SCHEDULE O OFFICE PLANNING BFERAILONS O DESIGNAFRUCATE TOOLING O VENDOR EVALUATION & SELECTION		900 EXFEDITE IN-HOUSE/PURCHASE PARTS 910 MEVIEW PROGRESS WITH PROGRAM OFFICE	4						
					169	45 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	441 450 451 452					FAC	8			NEAR		900	010 028 040	850 840 880		9000							
					UNITS COST	8 8 3 3 5 6 7 5 6 7 5 6 7 6 7 6 7 6 7 6 7 6 7 6	350 350 350 350	125 50 100 30	5 5 7 2 S	4444	150 0.8	0.8 7 10 3 10	3 8 8 12 13	2000	2 0 .5 1 80 .5		ດເດີນກ	2 2 1 .	- 35 - C	500 500 2	150 35 5 2.8	45 75 8	2 3 18						
				5	51 UNITS	0.00		000000000000000000000000000000000000000	80	-4444	5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0:		9.5	1 10 10 10 10 10 10 10 10 10 10 10 10 10				.5	2 - 1 - 1								
					CK £)	ю a – ю a a a	, 1 1 1 1 6 1	: : : : : : : : : : : : : : : : : : :	ี ส พ น ฉ ฉ	(V	F 01 0 0	00.1	25425	<u> </u>	ม.ม.อัฉี	48×	വ വ ്ഷ് ക		- ai m - c	, E & o =	- e e e	24.5 2.5 2.5	88:-2						
								e	XE X								EDØUT												
							5°X40°)	x25 x1	NG TRIM	/-an40		EST RIG	URE *		(N.	& AUTØ F	raj				ר מני							
						G MILL	S S S S S S S S S S S S S S S S S S S	TOOL TANK (2: TANK (2: ER STAND	AR ØPENI AR WELDE	MT SPRA) ENCIL # ENCIL # ENCIL # ENCIL # X25 *X12	5'X40') BAR #1 BAR #2	BAR #3 NER AD GRTABLE)	FIXTURE URE ELD FIXT		CUTTER URE SET	URE SEI DOME	BLEELER LLBIH VACUUG PUNP SONIC MEASURING DEVICER AUTO RDOUT COMMON BULKH RING BUTI WLD FIXT	E FIXTUR 30L 10IST)	FIXTURE	40.)	LXTURE	WELD DØL	BAR						
						ATFORM ARM ARM AL BORIN	CUTTER TIXTURE TIXTURE TIXTURE TEAT 0 VE	STATING EANING EANING ING WELD	AMPS ING/DOLL ING/DOLL INIT	F CUT ST CUT ST CUT ST CUT ST CUT ST CUT ST	C (25 X2)	PREADER POSITION LLDER HE RINDERCP	MIT FIXT	NIT PRESS E #1 E #2	E #3	HEAD GANTRY ESSURE	PUMP EASURING BULKH RI	HEAD KH LATH	K WELD I	LLC10'X'EMPLATE	TRIM FI UTTER R BARS	DIMAL WE MEAD M/RING W XTURE	HEAD MIT PREADER BAR &L						
					T00L1NG	D PAWER SAW 1 WARK PLATFARM 19 SCAIBE ARM 0 VERTICAL BURING MILL AGLLERS 2 STAKE 9 STAKE	114 STRTION COLTER 120 LATHE FIXURE # 1 121 LATHE FIXTURE # 2 122 LATHE FIXTURE # 3 140 HEAT TREAT OWEN (25'X25'X40').	ETCH CL	JAMB RI JAMB RI X-RAY U	MASKANI MASKANI HASKANI MASKANI CHEM MI	LGAS CE HOIST S HOIST S	HØIST : PICKUP STUD WE WELD GR	X-RAY I X-RAY L TRANSPO DOME TO	STRETCH STRETCH RING DI RING DI	RING DI	MIND WELD TAILURE SO WELDING HEAD BWNDING GANTRY HEAT/PRESSURE DOME	VACUUM SONIC M COMMON	WELDING COW BUL RING CU SPREADE	LØND CE LØX TAN DRILL	323 WELDER 330 SKIN WILL(10'X40') 340 DRILL TEMPLATE 341 POWER DRILL	SEGMENT POWER C SPREADE	MELDER BEND TRI	WELDER HEAL X-RAY UNIT HØIST SPRE/ LGAD CELL						
					160	900000000000000000000000000000000000000	182 182 183 184 184	150 151 152 152	162 163 163 170 170 170	172 172 173 174 175	8 60 60	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	25.05.05.05.05.05.05.05.05.05.05.05.05.05	260 280 280 280 280	263 270 271 272	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2885 485 885	300	380	323	360 361 370	372	200						

Table 5-10 Manufacturing Cost Analysis

	### CTURING PROCESSES (##)	## COSE WEIGH SECKS)-STROKE ## COSE WEIGH SECKS) ## COSE WEIGH STROKE ## COSE WEIGH SECKS ## COSE	TOTALING (K\$) (M/HR) (M/HR) (M/HR) (K\$) (K\$) (M/HR) (M/HR) (M/HR) (K\$) (M/HR) (M/HR) (M/HR) (K\$) (M/HR) (M/HR) (M/HR) (K\$) (K\$) (K\$) (K\$) (K\$) (K\$) (K\$) (K\$) (K\$) (K\$) (K\$) (K\$) (K\$) (K\$) (K\$)
	MFG. PLANT 19TAL LABGR NB. CRST (M/HR) CRS		
			2600 8000 8000 8000 8000 18000 9000 9000 9
	CHARSE CH		1 1400 1 1400 4 000 4 000 2 5 00 2 5 00 1 10200 1
MANUFACTURING COST ANALYSIS ***********************************	HATTLE	CORNOW BULKHEAD ASSY EICH CLEAN AFI DOWE FILCH CLEAN AFI DOWE FILCH CLEAN AFI DOWE FILCH CLEAN FLO DOWE FILCH CLEAN FLO DOWE MACHINE RING BUIT WELD'S A-RAY WELD'S ID DOME-WGH-SIGNE CONHON BULKHEAD F/D FRAN 9 SEGS3+1NSP ROUGH TRIM-CLN-AGE-INSP ROUGH TRIM-CLN-AGE-INSP RANDIZETRIM-NILP-DEBURR-INSP WELD SEGGS3+1NSP WELD SEGGS3+1NSP WELD SEGGS3+1NSP WELD SEGGS3+1NSP WELD DOWE TO BOXE-INSP WELD DOWE TO RINSP WELD SEGGS3+1NSP WELD SEGGS3+1NSP WELD SEGGS3+1NSP WELD SEGGS3+1NSP WELD DOWE TO RINSP WELD DOWE TO RINSP WELD DOWE TO RINSP WELD SEGGS3+1NSP WELD SEGGS3+1NSP WELD SEGGS3+1NSP WELD SEGGS3+1NSP WELD DOWE TO RINSP WELD DOWE TO RINSP WELD SEGGS3+1NSP WELD SEGGS3+1NSP WELD SEGGS3+1NSP WELD SEGGS3+1NSP WELD DOWE TO RINSP WELD DOWE TO RINSP WELD DOWE TO REAL WELDS WELD SEGGS3+1NSP WELD DOWE TO REAL WELDS WELD DOWE TO REAL WELDS WELD DOWE TO REAL WELDS WELD SEGGS3+1NSP WELD	1050 RING:FYD:COMMON BULKHEAD 1051 WERIFY MIL FOR 1 F/D Y RING 35 1052 FD:RH-1NSP 0 1053 TATA-CLN+GGE+INSP 0 1054 ANDDIZE-FEIGHT-STORE 0 1055 WELLD SEG*STPAGHTEN RINGFINSP 0 1059 WELLD SEG*STPAGHTEN RINGFINSP 0 1059 COMMON BULKHEAD AFT DOWE 170 1059 ROUGH TRING-CHNSP+STORE 0 1059 ROUGH TRING-CHNSP OF SEG*S + TASP OF SEG*
MANUFACTURING COST ANALYSIS ***********************************	UNIT N9. TSTAL. CSSI UNITS CSSI (KS) (KS) (KS) (KS) (KS) (KS) (KS) (KS)	T01AL C0ST (K\$) 6925 15908	M/HRS T01AL C0ST (K\$) 700. 10.5 700. 10.5 700. 10.5 700. 10.5 700. 10.5 700. 28.35 1890. 28.35 1890. 28.35 7000. 28.00 1200 22400. 1200 22400. 1200 220000. 1200 220000. 1500 160000. 1500
LINE: STATE-0F-T STRUCTURE: PROPE PRODUCTION RATE: VARIATION FROM TH TOTAL PROGRAM LEN	PLANT NB.2 1 ###	FACILITIES ====================================	NAMERON NAME
	C&STAL C&	0 4 4 8 4 4 9 4 4 9 4 4 9 4 4 9 4 9 4 9 4	10 3350 112 112 112 332 332 34 116 116 116 116 116 116 116 116 116 11
	PLANT NW 1 WILT NW WILT NW WILT TERETH FORM DIE #1 WILT NW WILD NW WILT NW WIL	TRIMMER 30 10 11 11 12 13 14 15 16 17 18 18 18 18 19 19 19 19 19 19	SET 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	100 STRETCH PRES 100 DOWN SEGMEN 120 DOWN	JAMB RING WELDER STRND JAMB RING-DOULAR DEENIN JAMB RING-DOULAR WELDER STRAY PICK UP POSITIONER STUD WELDER HEAD STUD WELDER HEAD STRAY HALDING FIXTURE SPREADER BAR #4 (H015T) LAAA CELL #8 SPREADER BAR #4 (H015T) TRANSPORT FIXTURE DAME TJ RING WELD FIXTURE DAME TJ RING WELD FIXTURE STRETCH PRESS RING DIE #1 RING DIE #1 RING DIE #2 RING DIE #2 RING DIE #2 RING DIE #3 RING WELD FIXTURE SET I	273 WELDING HEAD 280 VERTICAL BORNOG MILE 281 LATHE FIXTURE #1 282 LATHE FIXTURE #2 283 LATHE FIXTURE #3 291 WALDING GANTRY 291 WALDING GANTRY 292 VACUUM BAG 293 WACUUM PUMP 300 COMMON BULKHEAD RIN 300 COMMON BULKHEAD RIN 310 COMMON BULKHEAD FIXTU 340 DRILL JIGS 340 BRILL JIGS 343 WEDER 350 SKIN MILL (10*X40*)

5.1.2 SUPPORT FRUSTUM STRUCTURE, ELEMENT NO. 1

5,1,2,1 General

The frustum adapter structure, illustrated in Figure 2-2, is representative of the unpressurized, mechanically fastened structures that are widely used in the aerospace industry. The particular model selected for this study is 50.5 inches in diameter at the largest part and tapers to an upper ring 45.8 inches in diameter.

At the upper surface of the frustum, an aluminum honeycomb bulkhead is attached to carry the payload loads to the frustum and thereby to the vehicle's outer skin. The structure is of a riveted, stiffened skin construction, consisting of:

- a. Four conically formed skins.
- b. Two rings (upper and lower).
- c. Sixteen longerons.
- d. One aluminum honeycomb bulkhead.

The principal design criterion is the ability to withstand high loads with minimum deflection of the bulkhead. Minimum weight is important but secondary to the above criterion. The current method of fabrication is to form the rings, skins, and longerons and assemble by riveting. The upper bulkhead is prefabricated and attached by rivets in a similar manner.

A typical procedure in current practice is that the aluminum bulkhead and lower rings are fabricated by subcontractors. In the use of the aluminum honeycomb bulkhead, the necessary tooling is supplied by the prime contractor (General Electric), in addition to paying a cost of approximately \$10,000 per bulkhead. A significant part of this \$10,000 is directly attributable to numerous fastener installations which are inserted and bonded in place after the initial construction of the honeycomb is complete.

The details of the manufacturing processes are shown in Figure 5-3 for the support frustum. The processes and tooling indicated in this figure are described in the following sections.

5,1.2,2 Manufacturing Processes, Methods and Tooling

The manufacturing processes and materials used in definition of the state-of-the-art line (Line 1) are similar to those used on the Mark XII support frustum. In some cases, the planning was changed to illustrate possible variations in method for study purposes.

The computer printout of the manufacturing processes, with numbered steps corresponding to the flow chart in Figure 5-3, is shown in Tables 5-11 and 5-12. Although the honeycomb bulkhead is shown as a procured item, the detailed steps are illustrated in Figure 5-3 for further clarity of manufacturing steps.

The costs for materials and man-hours for quality control, manufacturing, assembly and test are tabulated in Tables 5-11 and 5-12. The lot size assumed for the calculations is that enough parts are made in one batch for one assembly. This necessitates set-up and completion of all operations for one assembly before continuing with the next operations for each of the tools. With the exception of the assembly fixtures, the rates of 2 per year and 20 per year require far less than full utilization of tools and fixtures (Tables 5-11 and 5-12). Production of greater than 20 per year could readily be accommodated with only limited increase in factory and tooling requirements. Unlike structural element 2 (the propellant tank) where rates are limited by the large size and usage of forming tools, the support frustum can be readily accommodated by a modest aerospace fabrication shop. In fact, economics indicate the advantage of multiple use of existing tools, in between operations for the 2 per year or 20 per year of this study. However, the costs of this study were determined assuming that charges include only those hours for the actual fabrication and do not incur additional costs for personnel stand-by or retention of certain key skills or experiences.

1 # mo-and

Table 5-11

Manufacturing Cost Analysis, 2 Per Year, Line 1, Element 1

MANUFACTURING COST ANALYSIS 09/24/70 LINE: STATE-0F-THE-ART MANUFACTURING LINE (LINE 1) STRUCTURE: SUPPORT FRUSTUM STRUCTURE (ELEMENT 1) PRODUCTION RATE: 2 PER YEAR VARIATION FROM THE NOMINALS NONE TOTAL PROGRAM LENGTH: 5 YEARS LABOR RATES-(\$/HR): PRE-MFG.- 15. 3 0.C.- 15. 3 MFG.- 15. MAT'L G.C. CØST LABØR (KS) (M/HR) MFG. INTT NO. TOTAL TOOLING COST UNITS COST MANUFACTURING PROCESSES 100 CONTROL MASTER FIXTURES 104 MASTER DRILL FIXTURES 104 DRILL FIXTURES 106 INSERT LOCATING FIXTURES 108 BULKHEAD ASSEMBLY FIXTURES 110 ASSEMBLY FIXTURE 112 CLECGS 114 DRILL 116 WOPK STAND 117 TORQUE TOOLS & WRENCH SET 120 INSPECTION STATION 130 SHEAR 140 BAND SAW 142 APPLIED TEMPLATE 152 BRAKE 152 BRAKE 1000 FRUSTUM ASSEMBLY 1002 PURCHASE I RING 1004 PURCHASE I BULKHEAD 1006 VERITY, INSP. PARTS 1008 CLECG RINGASKIN IN FIXT, INSP 1010 PGS'N LGNGERGNS IN FIXT, CLECG 1012 GPEN HOLES TG RIVET DIA, INSP 1014 DISASSEMBLE & DEBURR 1016 REPGSITION IN FIXT, RIVET, INSP 1018 BOLTH BULKHEAD TG FWD RING 1020 IDENTIFY, CLEAN, INSP 2 10 2 10 2 10 2 4 2 -6 1 3 200 0 1 1 0 0 0 5 1 0 1 10 100 0.9 4.95 3.6 1.2 0 60 10 10 100 0 0 0 0 0 0 0 0 0 0 320 240 80 200 320 0 0 0 40 0.0005 0.05 3 5•65 0.1 0 45 0.5 18 0.5 20 0.975 18 0 · 4 0 · 065 12 1030 LØNGERØN 1032 VERIFY MATERIAL 1034 SHEAR TØ SIZE 1036 SAW NOTCH 1038 BRAKE FØRNJØGGLE,INSPECT 1040 DRILL RIVET HØLES 1042 DEBURR,CLEAN,ALØDINE,IDENT,INSP 1 AZ APPLIED TEMPLATE 152 BRAKE 160 MAND DRILL 162 TEMPLATE 170 METAL TAG STAMP 180 BURING MILL 184 ALDING FIXTURE 184 CUTTING TUBBLE 190 RING MILDING FIXTURE 200 MICRUMETER 200 MICRUMETER 200 MICRUMETER 200 MICRUMETER 200 MICRUMETER 201 FORMETER 201 WEIGH SCALE 210 WEIGH SCALE 220 KIN INSPECTION STATION 230 BENCH 232 LAYBUT TEMPLATE 242 CONTIBUT TEMPLATE 242 CONTIBUT TEMPLATE 250 MURR STAND 252 APPLIED TEMPLATE 254 SKIM MAND DRILL 256 PUNCHES 260 TRIM TEMPLATE 270 CLEAN & ALUDINE TANKS 280 DOLLY 0.065 12 0.05 0.08 0.01 40 0.3 0.04 0.3 0.05 0.05 0.05 0 16 32 32 32 32 0.05 0.08 0.01 40 0.3 0.04 0.3 0.05 0.05 0.05 0.05 1050 RING 1052 VERIFY MATERIAL 1054 FACE, #FRM GRØBVE 1056 FACE, #BREE, CUT ØFF, SEMI-FINISH 1058 REVERSE RING, SEMI-FINISH-AGE 1060 RE-SETUP, FINISH I SIDE, INSP 1064 DEBURR-(LEAN , ALØDINE 1064 DEBURR-(LEAN , ALØDINE 1066 WEIGH, IDENTIFY, INSPECT 0 32 85 60 23 0.48 1.275 0.9 0.495 0 • 5 0 • 3 60 36 10 0.64 10 0.065 0.065 1070.SKIN 1072 VERTFY MATERIAL 1074 TRIM TØ LAYÐUT 1076 RÐLL FØRM 1078 DRILL HÐLES PER TEMPLATE 1080 TRIM ØUTLINE-DEBURR-INSP 1082 CHEM GLEAN & ALØDINE 1084 TAG PART 1086 APPLY PRØTECT-LØAD ØN DØLY-INSP 8 0.065 0.1 0.065 0.05 0.02 0.065 10 0.2 134.865 0.72 0.3 0.36 0.78 1.2 0.78 0.065 0 • 6 0 20 24 52 68 12 0.065 0.1 0.065 0.05 0.02 0.065 10 TOTAL TOOLING COST (KS) 1842 144.355 (27.63) 112-21 301 LABOR COST (KS) FACILITIES TØTAL CØST (KS) 500 CONSOLIDATED MANUFACTURING & ASSEMBLY PLANT 620 KEAR-TERA PRE-MANUFACTURING BPERATIONS SUMMARY OF RESULTS NON-RECURRING COSTS TØTAL CØST (K\$) PRE-MFG. TOTAL COST (KS) 10.5 6.3 10.5 7.5 16.8 7.92 LABOR (M/HR) ITEM M/HRS C#ST (KS) LABUR (M/HR) LABUR (M/HP) AND DEFINE PEIGRAM DIRECTIVES AND MEGA PACLIMINARY SCHEDULES AND AS DUCCI-LLITY STUDIES AND DEPOSITE FYARDER LANG LEAD LITEMS AND ACCUMPLATE/REVIEW ENGR & GC DOCUMENTASD DEVELOP SUM-ASSEMBLY & PARTS SCHEDULE AND MEGA PLANNING MPRATIANS AND DESIGNAPPACORE TABLING AND RESIGNAPPACORE TABLING AND RESIGNAPPACORE TABLING TOULING. FACILITIES 134-865 420• 700• 620 PRE-MANUFACTURING NON-RECURRING CAST RECURRING CAST 500. 145.32 1120. PROCESSES 112-21 301 18 42 144.355 3200 21 112-21 301 18 42 1094-04 1120+ LABUR IN (KS) (4-515) NON-RECURRING TOTALS 9688 145.32 RECURRING COSTS 2750 · 550 · 900 FXPEDITE IN-HØUSE/PURCHASE PARTS 910 PEVIEW PROGRESS WITH PROGRAM OFFICE RECURRING TOTALS 49 • 5 TITAL PECURRING AND NON-RECURRING PRE-MFG. COSTS= 194.82

Table 5-12
Manufacturing Cost Analysis, 20 Per Year, Line 1, Element 1

MANUFACTURING COST ANALYSIS 09/25/70 LINE: STATE-OF-THE-ART MANUFACTURING LINE (LINE 1) STRUCTURE: SUPPORT FRUSTUM STRUCTURE (ELEMENT 1) PRODUCTION RATE: 20 PER YEAR VARIATION FROM THE NOMINAL: NONE TOTAL PROGRAM LENGTH: 5 YEARS LABOR RATES-(\$/HR): PRE-MFG-- 15- 3 0-C-- 15- 3 MFG-- 15-UNIT NØ. TØTA CØSI UNITS CØST MAI'L U.C. 1010 100LING ====== LAFUR MANUFACIURING PROCESSES CK\$3 LABUR (Ir/Hh) 100 - WNINGL MASTER FIXTURES 102 MASTER DATILL FIXTURES 104 DRILL FIXTURES 106 INSERT LOCATING FIXTURES 106 INSERT LOCATING FIXTURES 110 ASSEMBLY FIXTURES 111 ASSEMBLY FIXTURE 111 ASSEMBLY FIXTURE 112 CLECUS 114 WILL 116 WORK STAND 117 DROUG TWOLS & WHENCH SEI 100 HOLD SAW 102 APPLIED TEMPLATE 150 PECH. FRESS 160 HAND SAW 102 APPLIED TEMPLATE 150 PECH. FRESS 160 HAND WILL 162 TEMPLATE 170 METAL TAG STAMP 160 BURING WILL 162 TEMPLATE 163 EMPLATE 164 BURING FIXTURE 165 EMPLATE 166 BURING FIXTURE 167 CUTTING TOOLS 168 HOLDING FIXTURE 168 CUTTING TOOLS 168 HOLDING FIXTURE 169 CHOKENES GAGE 110 WEIGH SCALE 120 WORK STAND 120 PURCHES 120 CLEMPLATE 120 CLEMPLA (K\$) (KS) (N/Ar) 10 10 10 5 5 5 1000 FRUSIUM ASSEMBLY 1004 PURCHASE I RING 1004 PURCHASE I BULKHEAD 1006 VERIFY, INSP- FARIS 1008 CLECO RINGGSKIN IN FIXI, INSP 1010 PBS'N LONGGRØNS IN FIXI, CLECO 1012 ØPEN HØLES IØ RIVEI DIA INSP 1014 DISASSEPBLE & DEBURR 1016 REPOSITIØN IN FIXI, RIVEI, INSP 1018 BØLT BULKHEAD IØ FRU RING 1020 IDENIIFY CLEAN, INSP 1000 FRUSTUM ASSEMBLY 6 60 106 0 6 /5 4(-(9 49.5 36 12 36 56.5 3 -0.0005 0.05 0.1 0.15 0.4 0.065 1 3 2000 1 1 0.05 1 0.1 1 0.15 1 0.4 c 400 e 450 800 800 3860 3 0.065 1030 LWNGERWN 1032 VERIFY MATERIAL 1034 SAW TO LENGIH 1036 SCRIBE & SAW WOICH 1038 JØGGLE, INSPECT 1040 DRILL RIVET HOLES 1042 DEBURR, CLEAN, ALODINE, ILENI, INSF 2 0•05 2 0•05 160 160 0.08 0.01 0.01 40 0•3 40 0•3 160 4.0 0.04 0.04 166 0.04 0.3 0.05 0.05 0.05 0.04 0.5 0.3 0.1 0.065 0.04 0.3 0.05 0.05 0.05 0.04 0.5 0.3 0.1 0.065 1050 RING 1052 VEHIFY MATERIAL 1054 FACE & FORM GROOVE 1056 FACE & FORM GROOVE 1056 FACE & FORM GROOVE 1058 REVERSE RING SEMI-FINISH AGE 1060 RE-SETUP-FINISH I SIDE, INSP 1060 RESETUP-FINISH I SIDE, INSP 1060 REDEBURR CLEAN A LUDDINE 1066 WEIGH, IDENTIFY, INSPECT 300 7.5 4.8 320 450 450 320 12.75 4.95 360 100 8 0•065 0.065 1070 SKIN 1072 VERIFY MATERIAL 1074 TRIM 10 LAYBUT 1076 ROLL FORM 1078 DRILL HOLES PER TEMPLATE 1080 TRIM GUTLINE-DEBURR, INSP 1082 CHEM CLEAN \$ ALODINE 1084 TAG PADT 0.1 0.065 0.05 0.02 0.065 0 • 1 0 • 065 0.05 3 · 6 7 · 8 0.02 120 10 680 12 0.2 0.2 120 7.8 TOTAL INGLING COST (KS) 1084 TAG PART 1086 APPLY PRØTECT. LØAD ØN DØLY. INSP 80 8260 816·15 273·9) 497-1 3010 (45-15) 18260 LABUR COST (KS) FACILITIES TOTAL COST (KS) 500 CONSOLIDATED MANUFACTURING & ASSEMBLY PLANT NEAR-TERM PRE-MANUFACTURING OPERATIONS SUMMARY OF RESULTS NON-RECURRING COSTS Q.C. LABØR (M/HR) PRE-MFG. TOTAL TØTAL CØST (K\$) 10.5 ITEM M/HRS LABOR LABOR (M/HR) CUST (KS) (M/HR) 800 REVIEW PROGRAM DIRECTIVES 810 MFG- PRELIMINARY SCHEDULES 820 PRODUCIBILITY STUDIES 820 IDENTIFY/ORDER LONG LEAD ITEMS 840 ACCUMILATE/REVIEW ENGR & OC DOCUMENT850 DEVELOP SUB-ASSEMELY & PARTS SCHEDULE 860 MFG- PLANNING OPERATIONS 870 DESIGN/PROGURE TOOLING 880 VENDOR EVALUATION & SELECTION 700-TØØLING 107•265 620 6.3 10.5 700. 500. 1120. PRE-MANUFACTURING NGN-RECURRING COST RECURRING COST 7.5 16.8 7.92 145•32 495 816•15 9688 33000 528 · 3200 · 497-1 PROCESSES 3010 18260 21 16.8 497-1 3010 18260 2183.74 NON-RECURRING TOTALS 9688 145.32 LABOR IN (KS) (45-15) RECURRING COSTS 900 EXPEDITE IN-HOUSE/PURCHASE PARTS 910 REVIEW PROGRESS WITH PROGRAM OFFICE 27500-412-5 412. 82.5 5500. 495 RECURRING TOTALS 33000 TOTAL RECURRING AND NON-RECURRING PRE-MFG. COSTS= 640-32

5.1.2.3 Facilities (Buildings)

The buildings and grounds necessary to produce the support frustum structure were laid out as an independent factory, in order to properly appraise the appropriate costs for manufacturing. The buildings and layout of facilities are shown in Figures 5-4 and 5-5 and and have resulted in the costs calculated below and summarized in Tables 5-11 and 5-12.

Building—20,000 square feet at \$25*per square foot	\$500K
• Parking lot for 150 cars—20,000 square feet	50K
• Land-2 acres at \$35,000 per acre	70K
Landscaping and access	
Total	\$620K

^{*}Values noted in Assumptions, Table 2-2.

In real circumstances, the facilities could not be justified solely by a single project, such as the support frustum manufacture. Additional work would be required and this would in turn reduce the apportioned costs to the manufacture of the support frustum. However, for this analysis, the entire costs are used to form a basis of comparison between various manufacturing technologies and to analyze impact of program factors.

5.1.2.4 Near-Term Pre-Manufacturing Operations

The pre-manufacturing operations, itemized in Table 5-11 are the same activities as with Element No. 2. The costs were recomputed for the support frustum structure manufacture with the results as indicated in Table 5-11. Learning curves, where applicable, can be applied to the recurring costs.

As with the propellant tank structure, a 40-percent recycle of activities was assumed to handle changes. This factor applies to the non-recurring costs—though use of the learning curves would have the effect of reducing this recycle. Based on experiences with Apollo/Saturn components, this 40-percent recycle factor seems conservative—in many cases, such as noted in Reference 8, costs may double because of change activities characteristic to aerospace equipment.

5,1,2,5 Summary

The complete cost tabulation for 2 per year and 20 per year production rate is shown in Tables 5-11 and 5-12. A summary for each calculation is shown on the respective tables.

Figure 5-4. Representative Facilities to Produce Support Frustum Structures

Figure 5-5. Office Area and Factory Space Allocation-Support Frustum (Element 1)

5.2 ANALYSIS OF STATE-OF-THE-ART MANUFACTURING LINE, LINE 1

Analysis of the state-of-the-art manufacturing lines for structural Elements 1 and 2 has resulted in the identification of problem areas and their solutions as shown in Table 5-13. Solutions to the identified problem areas are categorized as follows:

- Category I—Solutions immediately available.
- Category II—Solutions that require some technology development.
- Category III—Solutions that require major technology development.

When Category I solutions are incorporated into the state-of-the-art manufacturing line, it will become the improved line and when Category II and III solutions are incorporated into the improved line, it will become the advanced line.

Table 5-13

Representative Problem Areas (Areas for Potential Improvement)

Line 1 Problem Area
(Structural Element 2)

Problem 1

Facilities—The geographic separation of Plant 1 (Detail Fabrication) from Plant 2 (Assembly) is costly.

Solution (Category I)

Consolidate Facilities.

Five Year Program Savings

Item	2 Per Year (10 Tanks) Cost (\$)	20 Per Year (100 Tanks) Cost (\$)
Transportation		
Plant 1 to Plant 2		
Containers	+\$24,100	+\$ 72,300
Shipping	+\$39,000	+\$390,000
Facilities (Separated)		
Plant 1	\$2,881,190	\$ 6,925,317
Plant 2	6,502,850	15,907,850
Total Cost	\$8,384,040	\$22,833,167
Facilities (Consolidated)	-6,971,500	-16,679,882
Δ Cost (Saved)	+\$1,412,540	+\$ 6,153,285

Table 5-13 (Continued)

Representative Problem Areas (Areas for Potential Improvement) Line 1 Problem Area (Structural Element 2)

Five Year Program Savings

Item	2 Per Year (10 Tanks) Cost (\$)	20 Per Year (100 Tanks) Cost (\$)
Taxes (5 Years Saved)		
\$1,412,540 x $\frac{*30}{1000}$ x 5 years	\$ 211,881	
$$6,153,285 \times \frac{30}{1000} \times 5 \text{ years}$	3	\$ 922,993
Savings—Total	1,687,521	7,538,578
Savings—Total/Tank	168,752	75, 386

Problem 2

Welding-Costly and impacts quality.

Domes	610 feet	Labor and Material Cost/Foot
Cylinder	250 feet	Welding \$ 7.00
Rings		Welding 4 1100
Common Bulk	340 feet	X-ray 4.00 (\$2/single pass)
Cylinder	540 feet	\$11.00**
Miscellaneous	<u>60</u> feet	•
		•

1,800 feet of weld

Solution (Category I)

Convert vertical mill for manually operated spinning of domes.

Spin domes (4)—Eliminate 610 feet of weld per tank, related equipment and inspections. (Impact on quality and cost to be determined.)

Solution (Category III)

Develop improved welding techniques for welding cylinder segments, Y-rings, cylinder to dome rings, and jamb and dollar covers.

Reduce number of cylinder segments from seven to four by utilizing wider rolling mill (would require a 220-inch mill). Saves 105 feet of welding. (Impact on quality and cost to be determined.)

^{*}Assessment (County Area-Volusia County, Florida)

^{**}Not including equipment and set-up labor

Table 5-13 (Continued) Representative Problem Areas (Areas for Potential Improvement) Line 1 Problem Area (Structural Element 1 and 2)

Solution (Category III)

Eliminate all cylinder segment welds, roll form cylinder section in one single piece from an aluminum billet and chem mill structural pattern (waffles) or diffusion bond stiffeners to thin rolled cylinder. (Feasibility and impact on cost require further study)

Problem 3

Common bulkhead bonding costly and impacts quality. Currently bonding operation requires an estimated 2,000 man-hours of labor to fit and bond honeycomb in place.

Solution (Category III)

Utilize a diffusion bonding process applicable to compound curved surfaces. (Impact on cost and quality and feasibility require further study)

Problem 4

Program cost is impacted significantly by changes. Estimates of the overall impact of changes based upon past experience at the General Electric Company and other industrial survey interviews, the following breakdown of completed program cost is indicated.

Cost of Basic Program	35 percent
Cost of Engineering Required Changes	25 percent
Cost of Customer Required Changes	40 percent
	100 percent

Solution (Category III)

- a. Develop a more precise implementation of phased planning to insure minimum changes.
- b. Implement a more firm change control system.
- c. Apply block system effectivity to change incorporation.

Problem 5—Study Element 1

Aerospace materials are expensive because of exacting specifications and the rigid quality control that must be applied and verified.

Solution (Category I)

Material, machining and quality assurance costs of machined rings manufactured from forgings can be reduced by the purchase of forgings from which multiple rings can be machined.

Table 5-13 (Continued)

Representative Problem Areas (Areas for Potential Improvement) Line 1 Problem Area (Structural Element 1 and 2)

Problem 6-Study Elements 1 and 2

Incomplete knowledge of manufacturing limitations and shop capabilities by design engineering causes more costly designs.

Solution (Category II)

Information systems with large memories and visual displays are becoming available. These systems will make it practical to keep the design engineer up-to-date on the various standard size and shapes of materials and shop processing and tooling capabilities.

Problem 7—Study Element 1

Reduce the many detail and costly operations in connection with riveting with a faster and simpler joining technique.

Solution (Category III)

Roll and spot-welding could be used to a greater extent in aerospace structures if process reliability could be improved. These processing improvements are within the range of reasonable expectations within the next decade.

Problem 8-Study Element 1

The many detail parts add to cost since they all require varying amounts of support time.

Solution (Category III)

Numerically-controlled machinery centers with simplified programming will make it possible to machine aerospace structures from single forgings.

Additional areas of improvements can be identified in almost every area where significant costs are currently incurred. These areas are touched on briefly in Section 6 of this report and are tabulated in matrices that show impact of variations of these factors on costs.

5.3 DESCRIPTION, IMPROVED MANUFACTURING LINE, LINE 2

5.3.1 PROPELLANT TANK STRUCTURE (ELEMENT 2)

5.3.1.1 General

The improved manufacturing line, Line 2, incorporates the solution to problem 1, the consolidation of facilities, and the Category I solution to problem 2, the elimination of 610 feet of welding per tank by spinning all domes (Table 5-13, paragraph 5.2).

5.3.1.2 Manufacturing Processes and Methods

The manufacturing processes of Line 1 concerned with the dome segment forming, trimming, and welding into complete domes have been replaced with a series of spinning operations. The new manufacturing processes as well as new material costs are shown in Table 5-14. The change in material cost is primarily the result of shear spinning the domes from a single plate rather than forming from nine separate segments where a large percentage of the material is scrapped.

As with Line 1, as each new manufacturing process was defined and placed into its respective sequence, an analysis was made of each of the manufacturing processes to determine its material cost as applicable and its man-hour requirements for manufacturing and quality control. The results of these analyses, along with defined and sequenced manufacturing processes, are also shown in Table 5-14.

Table 5-14

Manufacturing Processes for Propellant Tank Structure (Element 2)
Improved Manufacturing Line (Line 2)

MANUFACTURING PRØCESSES	MAT L CØST (K\$)	Q.C. Labør (m/hr)	MFG. Labør (M/HR)	TØTAL CØST (K\$)
1000 TANK ASSEMBLY 1001 INSPECT FØRWARD DØME 1002 INSPECT LØX TANK 1003 MØVE DØME&LX TK TØ ASM TWR 1004 WELD CYL TØ LX TK(INT)&INSP 1005 WELD CYL TØ LX TK(EXT)&INSP 1006 WELD CYL TØ FWD DØME(INT) 1007 WELD CYL TØ FWD DØME(EXT) 1008 HYDRØSTATIC TEST 1009 DEGREASE 1010 WEIGHT & STØRE	0 0 0	20 40 0	10 10 20	0 • 45 0 • 75 0 • 3
1020 LØX TANK ASSEMBLY 1021 MATE C BLK/A-DØM:SEAL & INSP 1022 X-RAY ALL WELDS, WEIGH 1023 MØVE TØ ASSEMBLY AREA	1•98 0•28 0	156 20 5	160 40 10	6 • 72 1 • 18 0 • 225
1030 AFT DØME ASSEMBLY 1031 VERIFY MATERIAL FØR AFT DØME 1032 SCRIBE & SAW BLKS TØ REO'D SHAPE 1033 SHEAR SPIN FØRM AND INSPECT 1034 CLEAN, ANNEAL, QUENCH, & INSPECT 1035 SPIN FØRM TØ SHAPE AND INSPECT 1036 CLEAN, ANNEAL, QUENCH, & INSP. 1037 FINAL FØRM SPIN & INSPECT 1038 CUT&TRM \$-ØP'NG, DEBURR & INSP. 1039 CLEAN, H-TREAT, AGE, INSP, & STØRE 1040 MASK, CHEM-MILL, DEBURR & INSP. 1041 CLEAN, ANØDIZE, & INSPECT 1042 WEIGH AND STØRE 1043 WELD JAMB & INSPECT 1044 WELD STUDS, FITTINGS, & INSPECT 1045 GRIND ALL WELDS, &DIE-PEN INSP. 1046 PERFØRM LEAK CHECK 1047 X-RAY ALL WELDS & WEIGH 1048 TRANSPØRT TØ LØX TANK ASSY AREA	0 0 0 0	20 24 30 24 30 8	46 32 60 32 60 26	0.99 0.84 1.35 0.84 1.35
1050 CØMMØN BULKHEAD ASSEM 1051 ETCH CLEAN AFT DØME 1052 ETCH CLEAN FWD DØME 1053 FIT&BND HNYCMB & INSPECT 1054 BUT WLD Y RNGS LK CHK&INSP 1055 MACHINE RING BUT WELDS 1056 XRAY WLD•ULT/INSP DØME•WGH & STR	0 • 2 0 • 2 3 • 8 0 • 6 4 0	15 15 400 22 20	30	0.875
1060 COMMON BLKHD FWD DOME 1061 VERIFY COM BULKHEAD FWD DOME 1062 SCRIBE & SAW BLK TO REO'D SHAPE 1063 SHEAR SPIN FORM & INSPECT 1064 CLEAN, ANNEAL, QUENCH & INSPECT 1065 SPIN FORM TO SHAPE & INSPECT 1066 CLEAN, ANNEAL, QUENCH & INSPECT 1067 FINAL FORM SPIN & INSPECT 1068 CUT&TRM \$-OP'NG TO SIZ, DEBR&INSP 1069 CLEAN, H-TREAT, AGE INSP & STORE	0 0 0 0 0		0 32 46 32 60 32 60 26 54	0.8 0.72 0.99 0.84 1.35 0.84 1.35 0.51

Table 5-14 (Continued) Manufacturing Processes for Propellant Tank Structure (Element

Manufacturing Processes for Propellant Tank Structure (Element 2) Improved Manufacturing Line (Line 2)

1071 1072 1073 1074 1075		3.8 0 0.64 0.28 0 0.23 0.1	90 27 ,26 13 60 0	0 36 34 20 200 0 40	5.15 0.945 1.54 0.775 3.9 0.23 0.925
1 08 1 1 08 2 1 08 3 1 08 4 1 08 5	FORM & INSPECT TRM.CLN.AGE & INSPECT	0.35 0 0 0 0	14	0 26 14 8 80 50	0.35 0.6 0.27 0.18 1.8 1.125
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1111 1112 1113			0 16 20 24 30 24 30 8 30 90 27 26 13 60 0	0 32 46 32 60 32 60 26 54 0 36 34 20 200 0	0 0.72 0.99 0.84 1.35 0.84 1.35 0.51 1.26 4.55 0.945 1.54 0.775 3.9 0.46 0.925
2011 2012 2013 2014 2015 2016 2020 2021 2022 2023	FØRM & INSPECT TRIM, CLEAN, AGE & INSPECT ANØDIZE, WEIGH & STØRE WLD SEG, STRAIGHTEN RNG&INSP	0.35 0 0 0 0 0 0 31 6.5 32.5 13.85	1 4 4 4 40 25 0 28 28	0 26 14 8 80 50	0.35 0.6 0.27 0.18 1.8 1.125
2025 2027 2029 2030 2031 2041 2043	MØVE 7 SEGS TØ ASSY AREA DRILL SPREADER BAR HØLES HEAT TREAT (ANNEAL) FØRM 7 SKINS, CLN, AGE, INSP ANDZ, TRM, WGH, INSTL SPR BARS WELD 7 SEGMENTS & INSP TRIM CYL & WELD RINGS XRAY ALL WLDS, WEIGH &STØRE	0 0 0 0	7 14 0 98 31 106	14 28 14 203 45 212 66	13.85 0.315 0.63 0.21 4.515 1.14 6.97 2.77 4.1

Table 5-14 (Continued)

Manufacturing Processes for Propellant Tank Structure (Element 2) Improved Manufacturing Line (Line 2)

2050	RING TANK CYL				
2051	VRFY MAT FOR 2 RNGS(CYL)	0.7	0	0	0 • 7
2052	FØRM 8 SEG & INSPECT TRIM, AGE, INSPECT	0	28	52	1.2
2053	TRIM, AGE, INSPECT	0	8 -	28	0.54
2054	ANØDIZE WEIGH & STØRE	0	8	16	0.36
2055	ANODIZE WEIGH & STORE WLD SEG, STRTN 2 RNGS&INSP	0	80	160	3.6
2056	MILL RNG FACE, INSP, WEIGH	0	45	90	2-025
2057	MILL RNG FACE, INSP, WEIGH MOVE 2 RINGS TO ASSEM. AREA	0	5	10	0 • 225
	FØREWARD DØME				
2061	VERIFY MAT'L FOR FWD DOME	1 • 3	0 .	0	1 • 3
2062	SCRIBE&SAW BLK TØ REQ'D SHAPE SHEAR SPIN FØRM & INSPECT CLEAN, ANNEAL, QUENCH, & INSPECT	0	16	32	0.72
2063	SHEAR SPIN FØRM & INSPECT	0	20	46	0.99
2064	CLEAN, ANNEAL, QUENCH, & INSPECT	0	24	32	
2065	SPIN FØRM TØ SHAPE & INSPECT	0.	30	60	1.35
2066	CLEAN, ANNEAL, QUENCH, & INSPECT FINAL FORM SPIN & INSPECT	0	24	32	0.84
2067	FINAL FØRM SPIN & INSPECT	0	30	60	1.35
2068	CUT&TRM 5-0P'NG, DEBUR&INSP.	0	8	26	0.51
	CLEAN, H-TREAT, AGE, INSP & STØRE			54	1.26
2070	MASK, CHEM-MILL, DEBURR, & INSP.	7•8			9.15
2071	CLEAN, ANODIZE, & INSP. WEIGH & STORE	0	18	27	0.675
			5	9	
	WELD JAMB & INSPECT	0.28	13	18	0 • 745
2074	WELD STUDS, FITTINGS, & INSP.	0.22	19	23	0.85
2075	GRIND ALL WELDS, DIE-PEN INSP. PERFØRM LEAK CHECK	0 `	60	200	3•9
		0 • 3			
2078	LØAD, MØVE DØME TØ ASSY AREA	0	6	12	0.27
		136.97	3926	7293	305.255

LABOR COST (KS)

136.97 3926 7293 305. (58.89) (109.395)

5.3.1.3 Tooling

The Line 1 tooling list, Table 5-1, was modified to delete the dome segment stretch forming equipment and incorporate dome shear spinning equipment. The tooling requirements for the low production rate spinning utilized a modified vertical boring mill for spinning and the higher production rate tooling requirements incorporate a new spinning mill. The cost of this spinning equipment was supplied by the Air Force Materials Laboratory.

The modified tooling list incorporates the above change for Line 2 for both the 2 per year and 20 per year production rates and is shown in Table 5-15.

5.3.1.4 Facilities (Buildings)

The manufacturing and assembly plants for the improved manufacturing line for each of the two production rates have been combined such that each line is in its own building. In determining the cost of the facilities to house the improved manufacturing lines, one having a 2 per year production rate and the other 20 per year, it was assumed that the manufacturing area would have 30-foot ceilings and the assembly area would have 100-foot ceilings, the same as for Line 1.

The floor areas for each of the buildings were established based upon providing facilities for the number of personnel required and combining the floor area requirements for each Line 1 and adjusting for other elements shown in Table 5-16.

In arriving at the total cost of each of the consolidated plants, as for the Line 1 manufacturing plant, land cost and improvements for land designated commercial in the vicinity of Daytona Beach, Florida were set at \$12,000 per acre plus \$18,500 per acre for improvement. Other cost items, including \$18 per square foot of low-bay (30-foot ceiling) area and \$60 per square foot of high-bay (100-foot ceiling) area, were estimated based upon information contained in Reference 2 and information provided by the General Electric Company facility section. The total cost of each plant is summarized in Table 5-17.

Table 5-15

	TOOL IDENTIFICATION		: - - -	1				API	\ <u>\</u>	APPLICATION	_			*	* PER TOOL
			00	DOME	00	COMMON BULKHEAD	B Z	LKHE	AD	-	TANK		4	PROD	2
		TNO	l 		20	DOME	RING	<u>5</u>		ჳ	CYLINDER	 e:	BLY		,
o N	NAME	\$/K	FWD	T∃A	EMD	T∃A	EMD	TAA	YSSA	CAF	RING	YSSA	TANK TANK	S\YEAR	20√YEAR
100 101 102	Power Saw Work Platform Scribe Arm	8.0 2.0 1.0	×××	×××	×××	×××									ಣಣಣ
110 111 112 113 114	Vertical Boring Mill Rollers Stake Heat Manifold to Boring Mill Station Cutter	350.0 25.0 25.0 35.0 35.0	×××××	×××××	×××××	×××××	×	×			×				1 1 1 1 1
120 121 122	Lathe Fixture No. 1 Lathe Fixture No. 2 Lathe Fixture No. 3	12.0 12.0 12.0					×	×			×				
	Spinning Mill—Power Shear—NC	3250.0	×	×	×	×	×	×			×			ı	1
140 141	Heat Treat Oven (25'x25'x40') Quench Tank (25'x25'x40')	350.0	××	××	××	××	××	××		××	××			ㅋㅋ	7 -
150 151 152	Dome Rotating Tool Etch Cleaning Tank (25'x25'x12') Etch Cleaning Tank (25'x25'x40')	125.0 50.0 100.0	×	×	×××	×××	×	×		×	×				
160 161 162 163 164	Jamb Ring Welder Stand Jamb Clamps Jamb Ring/Dollar Opening Trimmer Jamb Ring/Dollar Welder X-ray Unit	30.0 2.0 5.0 7.0 18.0	××××	×××××	× ×××	× ×××		· · · · · · · · · · · · · · · · · · ·							01 01 01 01 01

Table 5-15 (Continued)

	JOL	GE *	318. ATC	ALLOWA SQ. FOC													
	*PER TOOL	PROD		20√YEAR		x x x	00	63	41			H 22 23	9		44	9	
	*	æ		S\XE∀B		4 4 4	4		73				က	-		81	
		,	BLY	TANK TANK													-
			黑	YSSA													
	z	TANK	CYLINDER	RING					×	×	×		×				
	4TIO	Ì	ζ	CAF					×	×		×	×				
<u>a</u>	APPLICATION	AD		YSSA										×	××	×	
ST ST		COMMON BULKHEAD	RING	TŦA					×	×	×		×				
(Elen T CC		Z B	2	FWD		·			×	×	×		×				
N N N		WWO	DOME	TŦA	××		×	×	×	×	∢		×	×	××		XXX
NO N		00	8	FWD	××	×		×	×	×	<		×	×	××		×××
K ST LICA		DOME	!	T∃A	××	×		×	×	×	<	××	×	×	××	×	
APP NE		2) 1	FWD	××			×	×	×	4	××	×	×	××	×	
PROPELLANT TANK STRUCTURE (Element 2) QUIREMENTS/APPLICATION/UNIT COST LINE # 2			E Z	COST \$/K	20.0		1.0	75.0	75.0	2.0	တ် ထ	.8 7.0 10.0	1.0	10.0	15.0 18.0	4.0	12.0 18.0 18.0
PROPELLANT TANK STRUCTURE (Elemen TOOL REQUIREMENTS/APPLICATION/UNIT COST LINE # 2	TOOL IDENTIFICATION			NAME	Spray Booth Neoprene Maskat Spray		Maskant Cut Stencil No. 4	Chem Mill (25'x25'x12')	Anodize (25'x25'x40')		hoist Spreader Bar No. 1 Hoist Spreader Bar No. 2	Hoist Spreader Bar No. 3 Pick-up Positioner Stud Welder Head	Weld Grinder (Portable)	Ammonia Gas Pressure Test Rig	X-ray Holding Fixture X-ray Unit	Transport Fixture	Dome to Ring Weld Fixture Welding Head X-ray Unit
				o Z	 	·	175	180	190			203 204 205	210	220	230	240	250 251 252

Table 5-15 (Continued)

	ON * PER TOOL	PROD *	KING CAL	<u> </u>	×× ××		111		111	888
2)	APPLICATION	EAD	YSSA			×××××	××	××	××	×××
nent S		칠	EWD Z	××	*** *					
(Elen IT CC		COMMON BULKHEAD	≥ QW1	××	××× ×					
J. U.N.		WW	Z GW1							
RUCI		8 2	Z GW7							
VK SI		DOME	TAA							
T TAP		L	FWD							**************************************
PROPELLANT TANK STRUCTURE (Element 2) QUIREMENTS/APPLICATION/UNIT COST LINE #2			COST *X	20.0 2.0 2.0 2.0	20.0 20.0 1.0 1.0 10.0	40.0 80.0 8.0 2.0 2.0 25.0	8.0 18.0	12.0 1.0	1.0	35.0 1.0 2.0
PROPELLANT TANK STRUCTURE (Elemen TOOL REQUIREMENTS/APPLICATION/UNIT COST LINE #2	TOOL IDENTIFICATION		NAME	Stretch Press Ring Die No. 1 Ring Die No. 2 Ring Die No. 3	Ring Extrusion Cutter Ring Weld Fixture Ring Weld Fixture Set 1 Ring Weld Fixture Set 2 Welding Head	Bonding Gantry Heat/Pressure Dome Vacuum Bag Bleeder Cloth Vacuum Pump Sonic Measuring Device and Automatic Readout	Common Bulkhead Ring Butt Weld Fixture Welding Head	Common Bulkhead Lathe Fixture Ring Cutting Tool	Spreader Bars (Hoist) Load Cell	LOX Tank Weld Fixture Drill Drill Jig
	:		o Z	260 261 262 263	270 271 272 273 273	280 281 282 283 284 285	290 291	300 301	$\frac{310}{311}$	$\frac{320}{321}$
<u> </u>	1	L		<u> </u>					***	

Table 5-15 (Continued)

Table 5-15 (Continued)

)O(CE *	118. ATC	ALLOWA SQ. FOC		
		*PER TOOL			SO\YEAR	9	υυυ
		4 *	PROD		S∕YEAR		ннн
			,	BLY	YZZEW TYNK	××	×××
				*	YSSA		
		7	TANK		виие		
		TIO		5	CAF		
(;		APPLICATION	AD		YSSA		
(Element 2)	ST		COMMON BULKHEAD	<u>5</u>	T∃A	-	
(Elen	00 1		Z B B	RING	ŁMD		
	TOOL REQUIREMENTS/APPLICATION/UNIT COST LINE # 2		QWV	ME	T ₃ A		
UCT			Ó	DOME	FWD		
PROPELLANT TANK STRUCTURE			DOME		T∃A		
			Od		FWD		
				L	COST \$/K	100.0	10.0 2.0 2.0
ROPE	UIREA						
<u>a.</u>	TOOL REQU						
		NO					
		ATIC	ATO D		щ.	nent	
	:	TOOL IDENTIFICATI			NAME	Hydrostatic Test Equipment Degreaser	
		DEN				est E	
		201				tic T	l ke
		Ĕ				Hydrostati Degreaser	Tank Dolly Hoist Yoke Load Cell
				<u> </u>		Hyd Deg	Tan Hoi Loa
					ON	440	450 451 452
	L		L			·	

Table 5-16
Manufacturing and Assembly Plant Floor Areas

PRODUCTION RATE	2 Per Year	20 Per Year
NO. OF PERSONNEL*	450	1,350
ITEM	Floor Area Square Feet	Floor Area Square Feet
Machine and Tool Area Aisle Ways and Entry Area Storage Area Materials Eating Area Loading Dock Extension Office Space Dispensary Toilet Facilities Fork Lift Park Area Transporter Storage Area Clean Room and Compressor Area Vending Machine Area	75,660 34,250 57,000 5,000 7,000 1,500 1,120 1,000 150 1,900 29,360	207,488 105,250 125,000 7,500 14,500 1,800 1,120 1,000 210 3,800 46,666
Total	214,000	514,424
30-Foot Ceiling (Est) Area 100-Foot Ceiling (Est) Area	164,000 50,000	374,424 140,000

^{*}For Sizing Only

5.3.1.5 Transportation

With the consolidation of the manufacturing and assembly plants in accordance with the solutions to problem 1, Table 5-13, shipping containers and transportation cost between plants is eliminated.

5.3,1.6 Near-Term Pre-Manufacturing Operations

It is assumed that this cost, both recurring and non-recurring, will be the same as for Line 1. Refer to Table 5-8, paragraph 5.1.1.6.

5.3.1.7 Improved Manufacturing Line Summary

The cost elements for production rates of 2 and 20 tanks per year discussed in paragraph 5.3.1 are summarized utilizing MANCAN program, and are shown in Tables 5-18 and 5-19.

Table 5-17

Land Acquisition and Building Construction Requirements/Cost Propellant Tank Structure, Element 2 Improved Manufacturing Line (Line 2) Manufacturing and Assembly Plant (Consolidated)

		A P. C. C. C.	
2 Per Year		20 Per Year	
Item	Cost (\$)	Item	Cost (\$)
Land—8.0 acres (Including Required Improvements)	244,000	Land—13.5 acres (Including Required Improvements)	411,750
Sewage Plant	300,000	Sewage Plant	345,000
Outside Storage Sheds	25, 500	Outside Storage Sheds	60,000
Dock Requirements	13,500	Dock Requirements	18,000
Main Plant x 30-Foot Ceiling 164,000 sq. ft. 100-Foot Ceiling 50,000 sq. ft.	5,952,000	Main Plant X 30-Foot Ceiling 374, 424 sq. ft. 100-Foot Ceiling 140, 000 sq. ft.	15, 139, 632
Dispensary	32,000	Dispensary	36,000
Bridge Cranes (1 10-Ton and 1 20-Ton)	90,000	Bridge Cranes (2 10-Ton and 2 20-Ton)	180,000
Wall Partitions (Portable), Doors, Storage Bins and Fixtures	110,000	Wall Partitions (Portable), Doors, Storage Bins and Fixtures	175,000
Toilet Facilities	15,000	Toilet Facilities	17,500
Office Furniture	6,500	Office Furniture	7,000
Air Lines, Compressors. Filters and Fire Protection System *	150,000	Air Lines, Compressors, Filters and Fire Protection System**	250,000
Fork Lift Trucks (4) and Tugs (2)	33,000	Fork Lift Trucks (6) and Tugs (2)	40,000
Total	6, 971, 500	Total	16,679,882

* Includes One Clean Room

x Building Temperature Controlled, Price Includes Heating, Air Conditioning and Insulation—\$18/sq.ft. 30-foot ceiling
\$60/sq. ft. 100-foot ceiling ** Includes Two Clean Rooms

Table 5-18 Manufacturing Cost Analysis

			**************************************	**************************************					
		LINE: IMPRGUED P STAUCTUTE: FROPE PADUCTION RAIE: VARIATION FAGA T	ANUFACTUAIN LLANT TANK 2 PEK TEAR TE NÖMINAL: 16TH: 5 YEAR	1270 IVE (LINE 2) JOTUKE (ELEMENT 2) JE					
TOOLING	UNIT NO. TOTAL COSI UNITS COST (KE)	T00LING	UNIT NO. TOTAL COST UNITS COST (KS)	MANUFACTURING PROCESSES	MAT'L 8.C. P. C. C. B. C.	MFG. TØTAL LABØR GØST (M/HR) (KS)	MANUE ACTURING PROCESSES Definition of the control	MAT'L 9.C. MFG. Teffe.	
100 PQUER SAW 101 WARR PLATFGAM 102 SCALBE ARM 104 VERTICAL BORING MILL 111 SALLERS 112 STAKE 113 HEAT MANIFELD 114 STATION CUTTER 115 LATHE FIXTURE \$ 1 122 LATHE FIXTURE \$ 2	25 2 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	430 TANK ASSEM TOWER 431 HEATH BLANKET 432 WELDER HEAD 433 X-RAY UNIT 424 HOSTSING YOKE & CHANE 440 HYDROSTATU TEST EQUIP 441 DEREKASER 450 TANK DÖLLY 451 HØIST YÖKE 452 LØAD CELL TØTAL TOORE		1000 JANK ASSEMBLY 1001 INSPECT FWD DOME 1001 INSPECT FWD TOWN 1002 INSECT LOK TANK 1003 WELD CYL TW LATINTERS INSP 1004 WELD CYL TW LATINTERS INSP 1006 WELD CYL TW FACTERY INSP 1007 WELD CYL TW FACTERY INSP 1009 DEGREASE 1000 DEGREASE	200 400 0 1120 520 1120 1026 2000 500		DEME TO RING-INSP DENTER CAP TO DOME-INSP ALL WELDS+DYE-PEN INSP ALL WELDS ALL WELDS AND TOOM BULKHEAD AND TOOM BULKHEAD AND TOOM AND Y RING. INSP	4 260 340 4 260 340 6 600 2000 6 150 400 5 140 260 40 140	
141 OURNEH TANK (25'X25'X40') 150 DORE RETATING TOB. 151 ETCH CLEANING TANK (25'X25'X12') 152 ETCH CLEANING TANK (25'X25'X40') 160 JAMB RING WELDER STAND				1000 LOW TANK ASSEMBLY 1001 LOW TANK TANK ASSEMBLY 1022 X-RAY ALL WELDS+WEIGH 1023 M9VE TØ A/A	2.8 2.8 0		ANDLES-WEIGHTS 10AE MELD SEG-STRAIGHTEN RING+INSP MILL RING FACE+INSP+STBRE TANK CYLINDER VENIFY WIL FUR 7 TANK SEG(S)	40 86 400 800 250 500	ıo.
162 JAMB RING/DOLLAR OPENING TRIMMER 163 JAMB RING/DOLLAR WELDER 164 JAMB RING/DOLLAR WELDER 164 X-RAY UNIT 170 SPRAY 1869TH 171 NEOPRENE MASKANI SPRAY 172 MASKANI CUT STENCIL # 2 175 MASKANI CUT STENCIL # 3				1030 FFT TOWER SSY 1031 VERIFY WILL FOR ALD 1032 SCKIEG-SAW HLK 10 REQ SHAPE 1033 SCKIEG-SAW HLK 10 REQ SHAPE 1034 SPIN FORM TO SRAPE-INSP 1035 SPIN FORM TO SHAPE-INSP 1036 CUT-TRIN CCC WING-SOBORRALINSP 1037 FINAL FORMSPIN-SIA TRIM+INSP 1038 CUT-TRIN CCC WING-SOBORRALINSP 1039 CLA+HEAT TREAT-AGGE-INSP-STORE	3 0000000	26 460 9.9 320 8.4 600 13.5 600 13.5 600 13.5 600 13.5	2023 WILL EGGES 625 2023 WILL WAFELE PATTERN 782 2024 ULTRASONIC INSPA 2024 2024 WILL SPACAGES BAR HOLES 0 0 2027 USILL SPACAGES BAR HOLES 0 0 2030 FBAT 7 SKINS-KLWA-KGH-INSP 2031 NWEDD SEG(S) FINS FROM 2020 FBAT 7 SKINS-KLWA-KGH-INSTL S/B(S) 2021 WELD SEG(S) FINS FROM 2021 WILL SPACE 2021 WILL SYME 2021	225 280 560 77*6 325 280 560 77*6 138*5 0 0 138*5 0 140 280 6*3 0 980 2030 45*15 0 310 450 11*4 22 1060 8120 697 12.7 340 660 27*7	wó n
190 ANDDIZE CSS.725.7401) 190 ANDDIZE CSS.725.7401) 200 LADA D CELL # 1 201 HIST SPREADER BAR #1 202 HHSTS SPREADER BAR #2 203 HHSTS SPREADER BAR #3 204 PLCKUP PSS.1114NER 205 STUD WELDER HEAD 210 WELD GRINDER CPRITABLE?	- 01	FACILITIES	TØTAL CØST (KS)	1040 MASK+CHEM WILL+DEBURR+INSP 1041 CLEAN+AN0DIZE+INSP 1042 WEICH+STÖRE 1043 WELD JAMSH-INSP 1044 WELD STUDS+FITINGS+INSP 1046 PERFÖRH LEAN CHECK 1046 PERFÖRH LEAN CHECK 1047 X-RAY ALL DØME WELDS+WEIGH 1043 TRANSPØRT TØ L/T A/A	78 900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	270 91:5 270 6:75 90 2:1 180 7:45 230 8:5 200 3 300 7 40 17:85	X-RAY ALL WELDS+WEIGH+STORE RING TANK CYL VERIFY MIL PROS RORW B SEG(S)+INSP TRIM+AGE+INSP ANDOLIZ-HEIGHESTORE MILL SEG-STRIN RINGS+INSP MILL RING FACE+INSP+WEIGH	280 520 800 800 800 800 800 800 160 800 1600 800 1600 800 1600 800 1600 800 1600 800 1600 800 800 800 800 800 800 800 800 800	
230 X-RAY HOLDING FIXTURE 231 X-RAY UNIT 240 TAANSPORT FIXTURE 250 DOME TO RING WELD FIXTURE 251 WELDING HEAD 226 STREAT UNIT 250 STREAT UNIT 250 STREAT WITH	52.80 4 9 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SOU CONSOLIDATED MANUFACTURING & ASSEMBLY FLANT	5972	1050 CORMAN BULKHEAD ASSY 1051 ETCH CLEAN AFT DONE 1052 ETCH CLEAN FND DONE 1053 FITHOND HONEYCOMB-INSP 1054 GUT WELD Y RINGS-LK CK-INSP 1055 MCHINE RING BUIT WELDS 1055 MCHINE RING BUIT WELDS 1055 MCHINE RING DITI WELDS	150 150 4000 220 200	•	THOSE RINGS IN THE TWO DOWE THE TWO DOWNE TO THE TWO DOWNE SCRIBE-SAW BLK TO REG SHAPE SHEAR SPIN VERWAINSP TO SHAPE'-INSP	160 320 200 460 240 320 300 600	
261 FAND DIE #1 262 RING DIE #2 263 RING DIE #2 270 RING EXTAUSIN CUITER 271 RING WELD FIXIUME 272 RING WELD FIXIUME 273 RING WELD FIXIUME SET 1 273 RING WELD FIXIUME SET 2 274 RING WELD FIXIUME SET 2 275 RING WELD FIXIUME SET 3 275 WELDING HEAD				1050 CONTROL BELOADE DESCRIPTIONS 1060 CONTROL BOTH FOR CHE F/D 1061 VERIET WILL FOR CHE F/D 1062 STREAT SFIN FARM-1NSF 1064 CLEAN-ANNEAL-HOLECCH-1NSF 1065 SFIN FORM TO SHAPE-1NSF	8 00 0 160 0 200 0 240		2666 CLEAN+ANNEAL+OUGNCH+INSP 0 2667 FINAL FRRM SFIN+SIA IRIN+INSP 0 2666 CUT-FIRIM C/C CDNG-PDEBURR-INSP 0 2070 MASK-CHEM MILL-DEBURR-INSP 78 2071 CLEAN+ANDDIZE-INSP 0 2072 HEIGH-STORFE 0 2072 HEIGH-STORFE 2.8	240 320 8.4 300 600 83.5 80 260 5.1 300 540 12.6 900 0 91.5 180 270 6.75 5 90 2.1	
260 BANDING GANTRY 281 REFLYPRESSURE DBME 262 WGCUMM BAG 293 BLEEDER CLOTH 284 WFCUMP PURP 285 SONIC MEASURING DEVICEA AUTO RDBUT 285 SONIC MEASURING DEVICEA AUTO RDBUT 290 COMMINIS BULKH RING BUIT WLD FIXT		NEAR-TERM PRE-MANUFACTURING OPERATIONS HELLSTEINSTEINSTEINSTEINSTEINSTEINSTEINSTEIN		1066 CLEAN-ANNEAL-OUGNCH-INSP 1067 I 107L FGRR SIN-STR IRIM-INSP 1068 CUT-TRIM C/C DRNG-DEBURR-INSP 1069 CLN+HEAT IREAT-AGE+INSP-STORE 1070 MASK-KHEM MILL-DEBURR+INSP 1071 CLEAN-ANGDIZE-INSFECT	0 240 0 300 0 300 58 900 6 4 2 200	320 8.4 600 13.5 260 5.1 5.4 12.6 0 51.6 360 9.45 340 15.4	WELD STUDENTE TINGS+INSP WELD STUDS-FITTINGS+INSP GRIND ALL WELDS+DY E-PEN INSP FERFORM LEAK OFECK FARAT ALL WELDS+WEIGH LD ON TRNSFR+MOVE F/D TO A/A	190 230 160 2000 100 300 950 40 60 120	
201 WELDING MEAN 300 COM BULNK LATHE FIXTURE 301 RING CUTTING TOOL 310 SPREADER BARS(H0IST) 311 LAAD CELL	188	ITEM AEVIEW FRUGARAM DIRECTIVES WWYGG. FRILININARY SCHEDULES		1074 GRIND ALL WELDS-POYE-PEN INSP 1075 X-MAY ALL WELDS-POYE-PEN INSP 1075 X-MAY ALL WELDS 1076 PEKFORM LEAK CHECK+WGH+SIGRE	2.0 600 2.3 0 1 150		LABOK GOSI (KS)	6 6 8 8 9 9	
320 LGX TANK WELD FIXTURE 321 DRILL 322 DRILL JIG 323 WELDER 330 SAN WILL(10'X40') 340 DRILL TEMPLATE 341 PQWER DRILL		620 PROBUCTRILTY SIDUES 830 DEWITITY ORDER LANG LEAD ITEMS 840 ACCUMULATE/REVIEW ENGR & QC DOCUMENT. 850 DEWILDS SITE-ASSEWALLY & PARTS SCHEDULE 850 REVELOS SITE-ASSEWALLY & PARTS SCHEDULE 860 RATE STANNING BERATIGNS 870 DESIGN/FRUCURE TOULING 880 VENDOR EVALUATION & SELECTION	935. 140.7 1890. 28.35 1890. 28.35 9380. 146.7 1400. 210 22400. 336 4200. 63	1040 RINGFYDICOMMON BULKHEAD 1081 VERIFY MIL FOR 1 F/D Y RING 1082 PORM+INSP 1083 IAIM+CLEAN+AGE+INSP 1084 AWDLZE+WEIDFASTORE 1085 WELD SEG-STRAIGHTEN RING+INSP 1086 MILL RING FAGE+INSP+SIGNE	3.5 0 0 140 0 40 0 400 0 250	0 3.5 266 6 140 2.7 80 1.8 800 18 500 11.25	SUMMARY OF RESULTS	7.5 MFG. PRE-MFG. 101AL LABOR COST MARN (WARN (KAS)	
350 BARNE AUTER 361 FOWER CUITER 361 FOWER CUITER 370 SPREADER BARS 371 LANGITUDINAL WELD FIXTURE 372 WELDER HEAD	0 0	G TØTALS CØSTS		1090 CGWMGN BULKHEAD AFT DØME 1091 VERIFY MTL FOR C/B AFT DØME 1092 SCHIBES-SAM BLK TO REO SHAPE 1093 SHEAR SPIN FORM-HINSP 1094 CLEAN-ANNEAL-QUENCH-HINSP	6 160 200 240			64540.	
380 EMB TRIMARING WELD DOLLY 381 WELD FIXTURE 382 WELDER HEAD 480 X-RAY UNIT 480 WHIST SPREADER BAR 481 LOAD CELL	75 1 75 5 1 75 18 1 18 · 18 · 18 · 18 · 18 · 18 · 18 ·	910 REVIEW PROGRESS WITH PROGRAM OFFICE 2006. RECURNING TOTALS 10000 197AL RECURRING PAR-MFG. C0315=	9000- 120 2000- 30 10000 150 6. C0515= 1118-1	1095 SPIN FORM IN SNAFE-INSP 1096 GREAN-ANNEAL-GOUEKCH-INSP 1097 FINAL FORM SIN-STA TRIN-INSP 1098 CUT-TRIM C/C OPNG-DEBURR-INSP 1099 CLN-HEAT TREAT-AGE-INSP-STORE 1100 MSXK-CHEM MILL-DEBURR-INSP 1110 CLEAN-ANNOT ZE-INSP	250 0 240 0 300 0 80 0 80 0 32 0 300	320 8.4 600 13.5 260 13.5 540 12.6 0 45.5	169.7 39260 169.7 39260 (588.9) (2 2	0 5

Table 5-19 Manufacturing Cost Analysis

	T	•	School oppose
	### 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1600 34 1600 34 1600 208.5 1000 208.5 1000 208.5 1000 130 2800 72 2800 135 2800 135 2800 135 2800 135 2800 118.5 2800 0 30 200 178.5 2800 0 30 2800 18.5 2800 0 30 2800 18.5 2800 18.5 280	T0TAL C0831 (K8) 10509.5 16660 968.1 1500 30525.5 60183.1
		1600 1600 1600 1600 1600 1600 1600 1600	PRE-NFG. LABBR (M/HR) 64540. 100000
	10	8000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 0 1 1
		136000000000000000000000000000000000000	MFG. LABOR (M/HR) 0 729300 10939.5
	F-11NSP N INSP NG-1NSP NG-1NSP SEG(S) STORE STORE	NSP I.GH SHAPE SP SP SP INSP INSP INSP INSP INSP INSP	SUMMARY OF RESULTS LABOR LAN (M/HR) (M/HR) (M/HR) 7 392600 725 7 392600 725 (5889) (109
	1.10G 1 10S 1 10 10G 1 10S 1 10G 1 10S 1 10G 1 10S 1 10G 1 10S 1 10G 1 1	FINGS+INSP *INSP+WEIGH A/A A/A A/A FWD DGWE TO RED SHAPE WATHER SHAPE WATHER SHAPE WATHER SHAPE WATHER SHAPE WATHER SHAPE WATHER SHAPE *** ** ** ** ** ** ** ** ** ** ** ** **	. K 53
	MACHUFACTURING PROCESSES ***ACTURING PROCESSES	A ANGOLZE-WEIGH-STORE S WELL STORE-THISPHEIGH MAUE RINGS TW A/A SCAFIEF-SAW BLK TW RED GWHE S SCAFIEF-SAW BLK TW RED SWHE S SCAFIEF-SAW BLK TW RED SWHE S SCAFIEF-SAW BLK TW SERVEN THIM-INSP S STORE SAW SERVEN STW TRIM-INSP S STW TRIM CO DWIG-BEGIRRINSP S STW TRIM CO TO DWIG-BEGIRRINSP S CLEAN+RAWOOLZE-INSP TO MANSK-KCHEM MILL-DEGURR-INSP S CHAN-RAWOOLZE-INSP WELD ARWS-NNSP WELD STWOSFTITINGS-INSP S REID ARWS-NNSP S REID	TURING COST COST SES 1
	######################################	2055 NELD SEG 2055 WELD SEG 2055 WELD SEG 2055 WELD SEG 2055 WELD SEG 2055 SEG SEG 2055 SEG SEG 2055 SEG SEG 2056 SEG SEG 2057 SEG SEG 2057 MASK-OHE 2057 MA	TOOLING FACILITES FRE-MANUFACTURING NON-FECURRING CON WEG-PROCESSES WEG-PROCESSES
	## 11111 100000 ## 200000000000000000000	2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TOB FAC FAC FAC FAC FAC FAC FAC FAC FAC FAC
	TOTAL COST (K\$) (K\$) (K\$) (K\$) (K\$) (K\$) (K\$) (K\$)		35 60 60 18 18 112.5 72 99 99 135 135 51 126 455 94.5
	MFG. ABBR MAHR) 1000		0 2600 1 400 8000 5000 5000 5000 5000 5000 5000
	200 HFG. WFG. WHG. WHR) (H/HR)	1500 9500 9500 9500 1500 1500 1600	1400 1400 400 400 400 2500 2500 2400 2400 3000 9000 9000 9000 9000 9000 9000 9
	HATTL CMST CMST CMST CMST CMST CMST CMST CMST		
غ.	MANUFACTURING PROCESSES 1000 TANK ASSEMBLY 1001 INSPECT FUD DOHE 1002 MANET TANK 1003 MANE FYD-LY.I TO ASSY TOWER 1004 WELD CYL TO LYT (INTER) + INSP 1005 WELD CYL TO LYT (INTER) + INSP 1006 WELD CYL TO FYD(INTER) + INSP 1006 WELD CYL TO FYD(INTER) + INSP 1007 WELD CYL TO FYD(INTER) + INSP 1008 WELD CYL TO FYD(INTER) + INSP 1009 DEGREASE 1009 METCH + TO FAN FOR HALD 1009 DEGREASE 1009 DEGRE	TAND ALL WELDS-PEN INSPECTION OF THE STREAM LEAR CHECK A TANA ALL DOME WELDS-WEIGH I RAMSPORT TO L.T A.A I ETCH CLEAN AT DOME STITH WELD Y RINGS-HIN SPECTION OF TO STREAM A BUIT WELD Y RINGS-HIN SPECTION OF TO STREAM A MACHINE MING BUIT WELDS A CATAY WELD-HUI DOME+WGH+SIORE A CATAY WELD-HUI DOME+WGH+SIORE A CATAY WELD-HUI TO SHAPE A CATAY WELD-HUI SPECTION OF TO STREAM A CATAY WELD-HUI SPECTION OF TO STRANS A CATAY WELD-HUI SPECTION OF TO STREAM A CLEAN+ANNEAL+OUGNCH+INSP CLEAN+ANNEAL+OUGNCH+INSP CLEAN+ANNEAL+OUGNCH+INSP CLEAN+ANNEAL+OUGNCH+INSP CLEAN+ANNEAL+OUGNCH+INSP CLEAN+ANNEAL+OUGNCH+INSP CLEAN+ANNEAL+OUGNCH+INSP CLEAN+ANNEAL+OUGNCH+INSP CLEAN+ANNEAL+OUGNCH+INSP CLEAN+ANNEALFORE TO DOME+INSP CLEAN+ANNEALFORE TO DOME+INSP CHELDS-BURE-INSP A KANA ALL WELDS-PEPEN INSP S A-RAM ALL WELDS-PEPEN INSP S A-RAM ALL WELDS-	KHEAD Y RING PRING+INSP STORE DOWE THT DOWE CO SHAPE THE SP TRIH-INSP TRIH-INSP TRIH-INSP TRIH-INSP TRIH-INSP TRIH-INSP TRIH-INSP TRIH-INSP
MFG 15	UFACTURING PRRCESSES INSPECT FUD DME INSPECT FUD DME INSPECT FUD AND INSPECT FUD AND INSPECT FUD AND WELD CYL TO LATKTER) + 1 WELD CYL TO WELD + 1 WELD CYL TO SEMBLY WELD CYL WELDS + WELD + 1 WELD CYL TO BOWN TO SEMBLY WELD CYL WELD + 1 WELD CYL TO SEMBLY WELD CYL TO SEMBLY WELD CYL TO SEMBLY WELD CYL TO SEMBLY WELD CYL TO CONTROL WELD CYL TO CYL TO CONTROL WELD CYL TO CONTROL WELD CYL TO CYL TO CYLL TO CONTROL WELD CYLL TO CYLL TO CYLL TO CYLL TO CONTROL WELD CYLL TO CYLL T	17 A/A A/A A/A A/A A/A A/A A/A A/A A/A A/	D RINGEFORCEMEND BULKHEAD I VERIFY WILL FOR 1 F/D Y R PORMAINSP ANDIZE***EIGH**SIDRE MILL SEG**SIRALGH***EIGH** MILL RING FACE***INSP***SIGNE MILL RING FAGE*****SIGNE VERIFY WILL FOR C'A AFT DOME VERIFY WILL FOR C'A AFT VERIFY WILL FOR C'A FORD CCHAN+ANNEAL**OUGNCH***INSP CHEAN**ANNEAL***OUGNCH***INSP CHEAN**ANNEAL***OUGNCH***INSP CHEAN**ANNEAL***OUGNCH***INSP CHEAN***ANNEAL****OUGNCH***INSP CHEAN***ANNEAL****OUGNCH***INSP CHEAN***ANNEAL*****OUGNCH***INSP CLH***ANNEAL*******************************
e) EMENI 2)	NAS PROCE ASSEMBLY ASSEMBLY CT LAX TO'L LAY CYL 10 L- CYL 10	RELID SIDDS PRINTED SIDDS PRIN	F DISCHMAN Y MIL FOUNDS CLEAN-GO RING RING F MIL FOUNDS F MIL F MI
ANALYSIS	MANUFACTURING PROCESSES 1000 TANK ASSEMBLY 1000 TANK ASSEMBLY 1001 INSPECT LOX TANK 1003 MAYE F/D-L/I TO AS 1003 MAYE F/D-L/I TO AS 1004 WELD CYL TO F/D/CK 1005 WELD CYL TO F/D/CK 1006 WEDE CYL TO F/D/CK 1007 WELD CYL TO F/D/CK 1007 WELD CYL TO F/D/CK 1008 WELD CYL TO F/D/CK 1009 WELGH-STORE 1003 CAN ALL WELDS+WE 1004 CALEA-ANURAL-OUEN 1003 SHARK SPIN FORM-IN 1003 SHARK SPIN FORM-IN 1003 SHARK SPIN FORM-IN 1003 SHARK SPIN FORM-IN 1003 CLC-MANURAL-OUEN 1004 WELD MANURAL-OUEN 1004 WELD MANURAL-OUEN 1006 WELD MANURAL-OUEN 1007 WELD WELD WANURAL-OUEN 1007 WELD WELD WANURAL-OUEN 1007 WELD WANURAL-OUEN 1007 WELD WELD WANURAL-OUEN 1007 WELD WELD WELD WELD WANURAL-OUEN 1007 WELD WANURAL-OUEN 1007 WELD WELD WELD WELD WELD WELD WELD WELD	1045 6710 1046 FFFFE 1048 1RANS 1050 COWWEN 1051 FICH 1052 FICH 1053 FITH 1054 CAPE 1064 CHERF 1064 CHERF 1064 CLEAN 1065 CLICAN 1072 WELD 1073 WELD 1073 WELD 1074 WELD 1075 WELD 1076 WELD 1077 CLEAN 1077 CLEAN 1077 CLEAN 1078 WELD 1078 WELD	080 RING: 081 WERFF 082 PORT- 083 MED 084 MED 085 WELD 085 WELD 090 CEMM 092 SKIR 093 SKIR 093 SKIR 094 CLEAN 095 CHEAN 095 CHEAN 1100 MASK-H 110 CLEAN
11 VG C051 09/23/70 URING LINE TEAR AL: NGNE YEARS	**************************************		
NUFACTUR ************************************	NO. TETAL NNITS CEST (KS) 6 300 6 480 6 240 6 240 6 12 10509.5	16680 (145) (1680 (1680 (165) (165)	28.35 28.35 140.7 210. 23.6 63 63 968.1 1500
, , ,	UNIT (K 83) (K 8		
LINE: IMFK STRUCIUME: FRBDUCIION WARIATION F 181AL PROGR	COST (KS)		ν
	169LING	AISSEMBLY PLANT	A 3C DOCUMENT. S A 3C DOCUMENT. S CALIUM NAM-RECURKING 101AL RECURKING COSTS
	TOTAL	« X Y	F GC DOCL F AC DOCL F ALTS SCI SCIION RECURE FECURE B F A F I S B G F A
	MULING HERSTAING YOKE & CRANE HERSTAIC TEST EQUIP DEGREASEA THAN DOLLY HAIST YOKE LAAD CELL	MUFACTURING MUSICALIVE T SOREDUM SOREDUM T SOREDUM	TUDIES TUDIES EW ENGR. EW ERNING N 8 SELI N 8 SELI N 1 PR WITH PR
	G YOKE & SEATIC TESSER ILLY TE	FKE-MANUF 1164 1764 1864444 186144444444444444444444444	FILLITY A IE/REVI A IE/REVI SUB-ASS SUB-ASS SUB-ASS SUB-ASS FRACUME EVALUATII EVALUATII FRAGESS
	T00LING = = = = = = = = = = = = = = = = = = =	FACILITIES ====================================	PRADUC ACCONTIL DEVELO DESIGN PESIGN PESIGN PENEN
			, Sept. 18 25 25 25 25 25 25 25 25 25 25 25 25 25
	, n		6 - 4 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
	1 5000 0	55 - 4 - 7 - 1 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	13
		- 5	
	AR-CNUM. X40°) Y225 X12°) (25° X40°) Y TRIMMER	AMMONIA GAS PRESSURE 1EST RIG X-RAY HOLDING FIXINE TARAY HOLDING FIXINE DOWN. 1W IT TARASPORT FIXINE DOWN. 1W RING WELD FIXINE DOWN. 1W RING WELD FIXINE TARAY UNI TARASPORT FIXINE THE BEST OF THE ## THIS DIE ## THIS WELD FIXINE THOSEN TO WE SUMPROVED THE FIXINE TO WE SUMPROVED THE FIXINE TO WE SUMPROVED THE FIXINE THE TAY PRESSURE DOWN TO WE SUMPROVED THE FIXINE THE WEAD THE	ω l
	1 2 2 3 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	SOURE TESSOURE TESSOU	FILLE TEMPLATE SAIL TEMPLATE SAIL TEMPLATE FRACE-40'
	AN WOER OF A STANDER OF A STAND	BEANS PRES I I I I I I I I I I I I I I I I I I I	WELDER HEAD TO SHE WELLE TEMPLATE DORLL TEMPLATE DORLL TEMPLATE BRAKE 40' BRAKE 40' BRAKE 40' BRAKE 40' SECHENT THIM FIXIURE SPECHOR HAND WELD FIXIUR WELDER HAND WELD FIXIUR WELDER HAND WELD FIXIUR WELDER HAND TANKEN HAND TO SHEAD HAND THE HAND WELDER HAND WELDER HAND WELDER HAND WELDER HAND WELDER HAND WELDER HAND TANKEN ASSEM TOWNER HEAD WELDER HAND WELDER HAND WELDER HAND WELDER HAND WITH WENTER HAND WELDER HAND WITH WENTER HAND WELDER HAND WITH WENTER HAND WELDER HAND WELL WELDER HAND WELL WELL WELL WELL WELL WELL WELL WEL
		A THE STANKE IES: A THAY HORDING FIXIURE I THANSPAR ALL STREAT UNII A THAN THE BARD A THAN THAN THAN THAN THAN THAN THAN THA	SELDER SERVICE SERVICE POWER DRILL FEMPLATE POWER DRAKE-OA SECHENT POWER CUTTEN POWER CUTTEN POWER CUTTEN SERABE
	1601 1002 1010 1010 1010 1010 1010 1010	230	3300 340 340 340 340 340 340 340 340 440 4

5.3.2 SUPPORT FRUSTUM STRUCTURE (ELEMENT 1)

5.3.2.1 General

Since manufacturing lines actually in place in any one facility are behind the current state of the art, Line 2 represents a hypothetical condition. Therefore, Line 2 for Element 1 represents the implementation of equipment and processes that can yield a delta improvement over Line 1 conditions. A perspective of these changes can be obtained by referring to Table 5-28.

5.3.2.2 Manufacturing Processes and Tooling

The derivation of Line 2 can be best described in the context of the principal structural elements, skin, longeron, etc., and the assembly joining method.

<u>Skin</u>—At the low production rate of two assemblies per year it is doubtful that any change from Line 1 is warranted. The Line for 20 per year, however, anticipates the application of the stretch-form technique now coming into wider use. While requiring specialized equipment and tooling, it is considered that the total of tangible and intangible factors involved would justify this approach.

Longeron—Here also, the production rate of 2 per year would dictate the most straightforward approach to satisfy critical design requirements. This involves the use of three tools/processes: (1) brake-forming, (2) sawing out the lightening notch on a band-saw, and (3) joggling in a press or special-purpose equipment. All of these are conventional operations and do not require special tooling. For the production rate of 20 per year, however, it is expected that design would accommodate to a standard extruded angle or a unique extrusion die and could be justified on the basis of the footage involved. Also, the quantities involved would justify the use of a combination die for joggle, notch, and shear.

Ring—The efficiencies of manufacturing multiple rings from a single forging should be so well established for Line 2 that this approach is incorporated even in the low production rate.

Bulkhead—A significant improvement in adhesive systems or methods of assembly cannot be predicted in order to warrant a change in method from Line 1. Any change here is reserved for Line 3 implementation.

<u>Assembly</u>—The use of roll and spot welding is implemented on Line 2, since it is felt that the important process variables of surface condition and welding cycles can be controlled sufficiently to produce a reliable weld.

5.3.2.3 Cost Considerations

Because of the modest quantities involved, the cost differences from Line 1 are expected to be small. It should be pointed out, however, that side effects of these changes may be more significant than the direct effects. By this, we mean shorter schedules should be achieved, which in turn mean faster response to program changes, and higher reliability of the process itself.

5.3.2.4 Summary

The tool lists, manufacturing process planning, and cost summaries for both 2 per year and 20 per year lines appear in Tables 5-20 and 5-21.

5.4 DESCRIPTION, ADVANCED MANUFACTURING LINE, LINE 3

5.4.1 PROPELLANT TANK STRUCTURE (ELEMENT 2)

5.4.1.1 General

The Advanced Manufacturing Line, Line 3, incorporates, in addition to the change in Line 2, improved welding techniques for welding cylinder segments, Y rings, cylinder-to-dome rings, jamb rings, and dollar covers. In addition, Line 3, with a production rate of 20 per year, incorporates a cylinder section comprised of four rather than seven segments. Line 3, with a production rate of 2 per year, uses the same cylinder configuration as Lines 1 and 2.

5.4.1.2 Manufacturing Processes and Methods

The manufacturing processes of Line 3, both production rates, reflect improved welding techniques estimated to reduce welding time, quality control time for weld checking, and weld X-ray time by 50 percent. In addition, Line 3, with a production rate of 20 per year, reflects the deletion of 105 feet of weld per cylindrical section by changing the cylinder from seven to four segments. The defined and sequenced manufacturing processes along with estimated material cost and manpower requirements per tank are shown in Table 5-22 for a production rate of 2 per year.

Table 5-20
Manufacturing Cost Analysis, 2 Per Year, Line 2, Element 1

		ING COST ANALYSIS ***********************************			
	-				
	LINE: IMPROVED MANUFAC	URING LINE (LINE 2)			
	STRUCTURE: SUPPORT FRO	TUM STRUCTURE (ELEMENT 1)			
	PRODUCTION RATE: 2 PER	YEAR			
	VARIATION FROM THE NOM				
	TOTAL PROGRAM LENGTH:	•			
	LABOR RATES+(\$/HR): PRE	MFG 15. 3 0.C 15. 3 MFG 15.			
F00LING	UNIT NØ. TØT CØST UNITS CØS (K\$) (K	MANUFACTURING PROCESSES	MAT'L G.C. Cøst labør (K\$) (m/hr)	LABØR	TØTAL CØST (K\$)
100 CONTROL MASTER FIXTURE	5 2 10	1000 FRUSTUM ASSEMBLY			
102 MASTER DRILL FIXTURE 104 DRILL FIXTURES	5 2 10 5 2 10 2 2 4 3 2 6 15 1 15 45 1 45 0 0 0 7 5 1 0 0	1001 PURCHASE 1 RING 1002 PURCHASE 1 BULKHEAD	10 0 100 0	0	10 100
106 INSERT LØCATING FIXTURES	2 2 4	1003 VERIFY, INSP, CLEAN, BAG PARTS 1004 MAKE RØLL-SPØT SPEC, INSPECT	0.2 40	60	1 • 7
108 BULKHEAD ASSEMBLY FIXTURES 110 CHEM CLEANING TANKS	3 2 6 15 1 15	1003 VERIFY, INSP-CLEAN, BAG PARTS 1004 MAKE RBLL-SPÖT SEC, INSPECT 1005 LØAD INTERF- RINGESKIN IN FIXT 1006 RØLL-SPØT ASSEMBLE & INSP 1500 LØAD FWD RING, RØLL-SPØT	0•5 30 T 0 0	20 20	1 • 25 0 • 3
120 SPØT WELDER	45 1 45	1006 ROLL-SPOT ASSEMBLE & INSP	0 10	50	0 - 45
122 ROLL-SPOT ELECTRODE 130 TESTING MACHINE	94 1 94		0+1 30	40 10	0.6 0.7
132 TEST FIXTURE	0.075 1 0.	75 1009 SPUT WELD LUNG.SPLADBLES, INSP	0 40	60	1.5
140 WELD ASSEMBLY FIXTURE 150 SPØT WELD TEST FIXTURE B	3 1 3 0.075 1 0.		0 0	20 20	0•3 0•6
152 SPØT WELD ELECTRØDE B	0.075 1 0.	15	. 20	-	-
156 TORQUE TOOLS AND WRENCH SET 160 Inspection Station	0×15 1 0× 0×5 1 0× 10 1 10	1020 LØNGERØN 1021 VERIFY MATERIAL	0.16 16	0	0 • 4
172 MECHANICAL PRESS 190 SHEAR	10 1 10 18 1 18	I 1022 SHEAK TO SIZE	0 0	16 32	0.24
200 BAND SAW	0-4 1 0-	1024 BRAKE FORM 8 JOGGLE, INSP	0 0 0 16 0 0	32	0.72
202 APPLIED TEMPLATE 210 BRAKE	0.065 1 0. 12 1 12	1025 DRILL PER TEMPLATE 1026 DEBURR, CLEAN, ALGO, IDENT, INSP	0 0 0 16	32 32	0 • 48 0 • 72
212 JØGGLE DIES	0.05 1 0.	5	0 16	32	0.12
220 HAND DRILL 222 TEMPLATE	0.05 1 0. 0.08 1 0.	1021 VEDIEV MATERIAL	0+3 30	0	0 • 75
230 METAL TAG STAMP	0.01 1 0.	1032 FACE & FØRM GRØØVE	0 0	32	0 • 48
240 RING HØLDING FIXTURE 243 BØRING MILL	0-3 ! 0- 40 i 40	1033 FACE BURE, SEMI-FIN, CUT OFF	0 0 0 0 0 10 0 20	85 60	1.275
244 CUTTING TOOLS	0.05 1 0.	1035 RE-SETUP-FINISH 1 SIDE-INSP	0 10	23	0 - 49 5
250 RING FINISH HØLDING FIXTURE 260 MICRØMETER	0.3 1 0. 0.05 1 0.	1035 REVERSE & FIN. COMPLETE, INSP 1037 DEBURR, CLEAN, & ALODINE	0 20 0•1 0	60 36	1 • 2 0 • 6 4
261 HEIGHT GAGE	0.05 1 0.	1038 WEIGH, IDENTIFY, INSP	0 10	10	0.3
262 INDICATOR 270 Roughness Gage	0.05 1 0. 0.04 1 0.				
280 WEIGH SCALE 290 SKIN INSPECTION STATION	0.5 1 0. 0.3 1 0.	1041 VERIFY MATERIAL	0.6 8	0	0 - 72
301 LAYGUT TEMPLATE	0.065 1 0.	55 1043 ROLL FORM	0 0	20 24	0•3 0•36
303 BENCH 310 Røll førmer	0-1 1 0- 8 1 8		0. 0	52 68	0 • 78 1 • 2
312 CONTOUR TEMPLATE	0.065 1 0.	1046 CHEM CLEAN, ALODINE	0.6 0	12	0.78
360 WORK STAND 361 APPLIED TEMPLATE	0·1 1 0· 0·065 1 0·	1047 TAG PART 1048 APPLY PROTECTION, LOAD, INSP	0 0 0•2 8	8	0+12 0+44
362 HAND DRILL	0.05 1 0.	5			
363 PUNCHES 364 APPLIED TEMPLATE	0.02 1 0. 0.065 1 0.		112.76 310	5 912	131-18
380 DGLLY TSTAL TSELING	0.2 1 0.				• • • •
FACILITIES	TOTAL C				
500 CONSOLIDATED MANUFACTURING & ASSEMBLY	(KS) 620 620				
900					
NEAR-TERM PRE-MANUFACTURING OPERATIONS		SUMMARY OF	F RESULTS		
NON-RECURRING COS		MAT*L Q.C.		E-MFG.	TƏTAL
ITEM	M/HRS TOTAL C	CØST LABØ	R LABOR	LABOR	CØST
ţ	(KS)		O (MVHR) (M/HR)	(KZ)
800 REVIEW PROGRAM DIRECTIVES 810 MFG. PRELIMINARY SCHEDULES	700 10 5 420 6 3	TOOLING FACILITIES			218-975
820 PRØDUCIBILITY STUDIES	700- 10-5	PRE-MANUFACTURING			680
830 IDENTIFY/ORDER LONG LEAD ITEMS 840 ACCUMULATE/REVIEW ENGR & GC DOCUMENT.	500· 7·5 1120· 16·8	NØN-RECURRING CØST RECURRING CØST		688 300	145,32
850 DEVELOP SUB-ASSEMBLY & PARTS SCHEDULE	528 • 7.92	MFG. PRØCESSES 112.76 316	912		49•5 131•18
840 MFG. PLANNING SPERATIONS 870 DESIGN/PROCURE TOOLING	3200• 48 1400• 21	112.76 316		12988	
880 VENDOR EVALUATION & SELECTION	1120- 16-8			.6700	1164.98
NGN-RECURRING T		- LABOR IN (KS) (4.74)	(13-68)		
RECURRING CO					
		1			
900 EXPEDITE IN-HOUSE/PURCHASE PARTS	2750 41.25	i			
900 EXPEDITE IN-HOUSE/PURCHASE PARTS 910 REVIEW PROGRESS WITH PROGRAM OFFICE	2750- 41.25 550- 8.25	_			
	550 8-25	-			

Table 5-21
Manufacturing Cost Analysis

LINE: IMPROVED MANUFACTURING LINE (LINE 2) STRUCTURE: SUPPORT FRUSTUM STRUCTURE (ELEMENT 1) PRØDUCTIØN RATE: 20 PER YEAR VARIATION FROM THE NOMINAL: NONE TOTAL PROGRAM LENGTH: 5 YEARS LARGE RATES-(S/HR): PRE-MEG.- 15. : 0.C.- 15. : MEG.- 15. TOTAL MAT'L G.C. 01 G . DULAL TOOLING COST UNITS COST (KS) (KS) MANUFACTURING PROCESSES 100 CONTROL MASTER FIXTURE 102 MASTER DRILL FIXTURE 104 DRILL FIXTURES 106 INSERT LOCATING FIXTURES 106 BULKHEAD ASSEMBLY FIXTURES 110 CHEN CLEANING TANNS 122 HOLL-SPOT ELECTRODE 123 TESTING MACHINE 124 WELD ASSEMBLY FIXTURE 140 WELD ASSEMBLY FIXTURE 150 SPOT WELD ELECTRODE 151 SPOT WELD ELECTRODE 152 SPOT WELD ELECTRODE 156 TORMOUT TOOLS 170 JOGGLE-NOTCH-SHEAR 172 MECHANICAL PRESS 180 PUNCH DIE 230 METAL IAG STAMP 242 RING HOLLING FIXTURE 243 EPSING MILL 244 CUTITING TOOLS 250 RING FINISH HOLDING FIXTURE 264 INDICATOR 265 INDICATOR 270 ADUGNNESS GAGE 250 WEIGH SCALE 296 SKIN INSPECTION STATION JULIANUM 104 SEPPLATE CHANN 1000 FRUSTUM ASSEMBLY 1001 PURCHASE 1 RING 1002 PURCHASE 1 BULKHLAD 1003 VERIFY.INSP.CLEAN.BAG PARTS 1004 MAKE RBUL-SPØT SPEC.INSPECT 1005 LØAD INTERF. RINGSSKIN IN FIXT 1006 RØLL-SPØT ASSEMBLE & INSP 1007 LØAD FØD RING, KØLL-SPØT 1008 MAKE SPØT-WELD TESTS.INSP 1009 SPØT WELD LØNG.SPLØBLRS.INSP 1010 BØLT ASSEMBLE BULKHEAD 1011 CLEAN.IDENTIFY.INSPECT 5 5 5 2 3 15 45 0.075 24 0.075 10 10 10 4 6 15 45 0.075 24 0.075 6 6 400 306 0 160 0 0 600 200 200 200 400 100 400 2. 5 0 0 0 0 3 4•5 0 300 400 600 200 3 0.075 0.075 0.15 0.5 0 206 200 1020 LØNGERØN 1021 VERIFY MATERIAL 1022 JØGGLE 1023 NØTCH 1024 SHEAR 1025 PUNCH HØLES 1026 DEBURR,CLEAN,ALÐD,1UENI,INSP 0.15 0.5 2 0 48 46 64 160 320 1.6 166 î۵ 0.72 0.8 0.01 0.5 40 2.4 160 1030 RING 1031 VERIFY MATERIAL 1032 FACE & FORM GROOVE 1033 FACE BORE, SEMI-FIN, CUT OFF 1034 REVERSE RING, SEMI-FINISHAGUE 1035 NE-SETUP, FINISH 1 SIDE, 14391036 REVERSE & FIN. COMPLETE, INSP 1037 DEBURR, CLEAN, & ALD 40 0.05 0.3 0.05 0.05 0.05 0.04 0.5 0.3 0.3 300 0 0 0 100 7 - 5 0 320 650 600 230 600 360 12 6.4 3 200 29G SKIN INSPECTION STAT JUL IAALE 301 LAYOUT TEMPLATE 302 ELECTRIC SHEARS 310 ROLL FORMER 320 ARC WELDER 320 ARC WELDER 320 STRETCH MANDREL 340 BORING MILL FIXTURE 350 INSPECTION FIXTURE 380 DOLLY 100 100 1040 SKIN 1041 VERIFY MATERIAL 1042 TRIM T8 LAYBUT 1043 MBLL FRRM 1044 ARC WELD 1045 STRETCH FORM 1046 TRIM T0 SIZE, INSPECT 1047 CHEM CLEAN, ALBOINE 1046 IDENTIFY, PROTECT, STORE, INSP 0.1 0 50 60 15.3 0.75 0.9 1.5 15. 20 100 150 150 50 0.8 0.8 2.25 3 0.2 0.0 ĭ.5 TOTAL TOOLING COST (KS) 200-065 505.1 2810 (42.15) 7010 652.4 (105.15) LAHOR COST (KS) TØTAL CØST FACILITIES 500 CONSOLIDATED MANUFACTURING & ASSEMBLY PLANT 620 SUMMARY OF RESULTS VEAR-TERM PRE-MANUFACTURING OPERATIONS 10N-RECURRING COSTS 0.C. LABOR (M/HR) PRE-MFG. TOTAL CØST (KS) LABØR (M/HR) LABUR (M/HR) COST (KS) TOTAL COST (K\$) 10.5 6.3 10.5 7.5 ITEM M/HRS 800 REVIEW PROGRAM DIRECTIVES 810 MFG. PRELIMINARY SCHEDULES 820 PRODUCIBILITY STUDIES 830 IDENTIFY/ØRDER LØNG LEAD ITEMS 840 ACCUMULATE/REVIEW ENGR & QC DOCUMENT. 850 DEVELOP SUB-ASSEMBLY & PARTS SCHEDULE 860 MFG. PLANNING ØPERATIØNS 870 DESIGN/PROGURE TOØLING 870 VENDØR EVALUATIØN & SELECTIØN 200+065 700. T30LING FACILITIES PRE-MANUFACTURING NØN-RECURRING CØST RECURRING CØST MFG- PRØCESSES 5 620 420 · 9688 145.32 145. 495 652.4 500+ 33000 1120. 16.8 505-1 2810 7010 3200 505-1 2810 7010 42688 2112.79 1400. 21 1120-16-8 (105-15) LARGE IN (KS) (42-15) NON-RECURRING TOTALS 9688 145+32 RECURRING COSTS 412.5 82.5 900 EXPEDITE IN-HOUSE/PURCHASE PARTS 910 REVIEW PROGRESS WITH PROGRAM OFFICE 33000 495 RECURRING TOTALS TOTAL RECURRING AND NON-RECURRING PRE-MFG. COSTS# 640.32

Table 5-22

Manufacturing Processes for Propellant Tank Structure (Element 2)

Advanced Manufacturing Line (Line 3)

MANUFACTURING PROCESSES	MAT 'L CØST (K\$)	0.C. Labor (M/Hr)	MFG. Labør (M/HR)	TØTAL CØST (K\$)
1000 TANK ASSEMBLY				
1000 TARK HOSEROLI 1001 INSPECT FORWARD DOMF	'n	20	10	0.45
1001 INSPECT FØRWARD DØME 1002 INSPECT LØX TANK	n	40	10	0.75
1003 MOVE DOME&LX TK TO ASM TWR	0	o .	20	0.3
1003 MØVE DØME&LX TK TØ ASM TWR 1004 WELD CYL TØ LX TK(INT)&INSP 1005 WELD CYL TØ LX TK(EXT)&INSP 1006 WELD CYL TØ FWD DØME(INT)	0.31	62	122	3.07
1005 WELD CYL TØ LX TK(EXT)&INSP	0.31	27	27	1.12
1006 WELD CYL TØ FWD DØME(INT)	0.31	62	92	2.62
1007 WELD CYL TØ FWD DØME(EXT)	0.31	52	52	1.87
1008 HYDRØSTATIC TEST	0 '	. 200	400	9
1009 DEGREASE	0	50	100	2.25
1007 WELD CYL TØ FWD DØME(EXT) 1008 HYDRØSTATIC TEST 1009 DEGREASE 1010 WEIGHT & STØRE	0	20	125	2-175
1020 LØX TANK ASSEMBLY				
1021 MATE C BLK/A-DØM: SEAL & INSP	1.34	140	152	5.72
1022 X-RAY ALL WELDS, WEIGH	0.14	10	20	0.59
1020 LOX TAVE ASSEMBLY 1021 MATE C BLK/A-DOM: SEAL & INSP 1022 X-RAY ALL WELDS, WEIGH 1023 MOVE TO ASSEMBLY AREA	0	5	10	0.225
1030 AFT DØME ASSEMBLY				
1031 VERIFY MATERIAL FOR AFT DOME	2•6	0	0	2.6
1032 SCRIBE & SAW BLKS TØ REO'D SHAPE	0	16	32	0.72
1033 SHEAR SPIN FORM AND INSPECT	0	20	46	0.99
1034 CLEAN, ANNEAL, QUENCH, & INSPECT	0	24	32	0.84
1035 SPIN FORM TO SHAPE AND INSPECT	0	30	60	1.35
1036 CLEAN, ANNEAL, QUENCH, & INSP.	0	24	32	0.84
1031 VERTPT MATERIAL FOR AFT DOME 1032 SCRIBE & SAW BLKS TO REO'D SHAPE 1033 SHEAR SPIN FORM AND INSPECT 1034 CLEAN, ANNEAL, QUENCH, & INSPECT 1035 SPIN FORM TO SHAPE AND INSPECT 1036 CLEAN, ANNEAL, QUENCH, & INSP- 1037 FINAL FORM SPIN & INSPECT 1038 CUT&TRM \$-0P'NG, DEBURR & INSP	0	30	60	1.35
1030 CUIGIRM STUP NG) DEBURK & INSP	0	30	26	0.51
1039 CLEAN, H-TREAT, AGE, INSP, & STØRE 1040 MASK, CHEM-MILL, DEBURR & INSP. 1041 CLEAN, ANØDIZE, & INSPECT 1042 WEIGH AND STØRE 1043 WELD JAMB & INSPECT 1044 WELD STUDS, FITTINGS, & INSPECT	7.8	90	54 0	1.20
1040 MASAPOREM MICCIPELORR & INSPECT	Λ.	18	27	0.675
1042 WEIGH AND STORF	ñ	5	9	0.075
1043 WELD JAMB & INSPECT	0.25	10	15	0.625
1044 WELD STUDS, FITTINGS, & INSPECT	0.11	10	15	0.485
1045 GRIND ALL WELDS, &DIE-PEN INSP.	0	60	200	3.9
1046 PERFØRM LEAK CHECK	0 • 1	10	30	0.7
1047 X-RAY ALL WELDS & WEIGH	0.15	50	3	0.945
1045 GRIND ALL WELDS, &DIE-PEN INSP- 1046 PERFØRM LEAK CHECK 1047 X-RAY ALL WELDS & WEIGH 1048 TRANSPØRT TØ LØX TANK ASSY AREA	0	5	10	0.225
1050 CØMMØN BULKHEAD ASSEM				
1051 ETCH CLEAN AFT DØME 1052 ETCH CLEAN FWD DØME	0.2	15	30	
1052 ETCH CLEAN FWD DØME	0.2	15	30	0.875
1053 FIT&BND HNYCMB & INSPECT	3.8	400	1600	33.8
1054 BUT WLD Y RNGS LK CHK&INSP	0 • 4	11	28	0.985
1055 MACHINE RING BUT WELDS	0	20	80	1 • 5
1056 XRAY WLD. ULT/INSP DØME. WGH & STR	4-17	30	10	4.77
1060 COMMON BLKHD FWD DOME		_		
1061 VERIFY COM BULKHEAD FWD DOME	0.8	0	0	0.8
1062 SCRIBE & SAW BLK TO REO'D SHAPE	0	16	32	0.72
1063 SHEAR SPIN FORM & INSPECT	0	20	46	0.99
1064 CLEAN, ANNEAL, QUENCH & INSPECT	0	24	32	0.84
1065 SPIN FORM TO SHAPE & INSPECT 1066 CLEAN, ANNEAL, QUENCH & INSPECT	0	30 24	60 32	1 · 35 0 · 84
1066 CLEAN, ANNEAL, GUENCH & INSPECT 1067 FINAL FORM SPIN & INSPECT	0	30	32 60	1.35
1068 CUT&TRM \$-0P'NG TO SIZ,DEBR&INSP	0	8	26	0.51
1069 CLEAN, H-TREAT, AGE INSP & STORE	0	30	54	1.26
1005 OFFICENT TURNISHOF THOS. # 218UF	•	30	~~	

Table 5-22 (Continued) Manufacturing Processes for Propellant Tank Structure (Element 2)

Manufacturing Processes for Propellant Tank Structure (Element 2)
Advanced Manufacturing Line (Line 3)

MASK CHEM-MILL DEBURR & INSPECT 3.8 90 0

1071 1072 1073 1074 1075	MASK, CHEM-MILL, DEBURR & INSPECT CLEAN, ANODIZE, & INSPECT WELD DOME TO RING & INSPECT WELD CNTR \$-CAP TO DOME, INSP GRIND ALL WELDS & DIE-PEN INSP X-RAY ALL WELDS PERFORM LEAK CHK, WEIGH & STORE	3.8 0 0.32 0.14 0 0.23 0.1	90 27 18 10 60 0	0 36 30 18 200 0	5.15 0.945 1.04 0.56 3.9 0.23 0.925
1 08 1 1 08 2 1 08 3 1 08 4 1 08 5	FØRM & INSPECT TRM.CLN.AGE & INSPECT	0 • 35 0 0 0 0 0	0 14 4 4 20 25	0 26 14 8 40 50	0.35 0.6 0.27 0.18 0.9 1.125
1091 1092 1093 1094 1095 1096 1097 1098 1100 1110 1111 1112		0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24 30 8 30 90 27 18 10 60	0 32 46 32 60 32 60 26 54 0 36 30 18 200 0	0.9 0.72 0.99 0.84 1.35 0.84 1.35 0.51 1.26 4.55 0.945 1.04 0.7 3.9 0.23 0.925
2011 2012 2013 2014 2015	RING-AFT DØME CØMMØN BULK VRFY MAT FØR 1AFT DØME Y RNG FØRM & INSPECT TRIM, CLEAN, AGE & INSPECT ANØDIZE, WEIGH & STØRE WLD SEG, STRAIGHTEN RNG&INSP MILL RNG FACE, INSPECT& STØRE	0.35 0 0 0 0	0 14 4 20 25	0 26 14 8 40 50	0.35 0.6 0.27 0.18 0.9
2021 2022 2023 2024 2025 2027 2029 2030 2031 2041 2043	TANK CYLINDER VRFY MAT L FØR 7 SEG S(220" MILL) MILL EDGES MILL WAFFLE PATTERN ULTRASØNIC INSPECT MØVE 7 SEGS TØ ASSY AREA DRILL SPREADER BAR HØLES. HEAT TREAT (ANNEAL) FØRM 7 SKINS, CLN, AGE, INSP ANDZ, TRM, WGH, INSTL SPR BARS WELD 7 SEGMENTS & INSP TRIM CYL & WELD RINGS XRAY ALL WLDS, WEIGH &STØRE	31 6.5 32.5 13.85 0 0 0 0 1.1 0.62 1.3	0 28 28 0 7 14 0 98 31 80 34	0 56 56 0 14 28 14 203 45 160 66 40	31 7.76 33.76 13.85 0.315 0.63 0.21 4.515 1.14 4.7 2.12 2.05

Table 5-22 (Continued) Manufacturing Processes for Propellant Tank Structure (Element 2) Advanced Manufacturing Line (Line 3)

2050 RING TANK CYL				*
2050 RING TANK CYL 2051 VRFY MAT FØR 2 RNGS(CYL) 2052 FØRM 8 SEG & INSPECT 2053 TRIM, AGE, INSPECT 2054 ANØDIZE WEIGH & STØRE	0 • 7	0	0	0 • 7
2052 FØRM 8 SEG & INSPECT	0	28	52	. 1.2
2053 TRIM, AGE, INSPECT	Ó	8	28	0.54
2054 ANØDIZE WEIGH & STØRE	0	8	16	0.36
2055 WLD SEG, STRTN 2 RNGS&INSP	0	40	80	1.8
2056 MILL RNG FACE, INSP, WEIGH	0	45	90	2.025
2055 WLD SEG, STRTN 2 RNGS&INSP 2056 MILL RNG FACE, INSP, WEIGH 2057 MOVE 2 RINGS TO ASSEM. AREA	0	5	10	0.225
2060 FØREWARD DØME				
2061 VERIFY MAT'L FOR FWD DOME	1 • 3	0	0	1 • 3
2062 SCRIBE&SAW BLK TØ REQ'D SHAPE	0	.16	32	0.72
2063 SHEAR SPIN FØRM & INSPECT 2064 CLEAN, ANNEAL, QUENCH, & INSPECT	0			0.99
2064 CLEAN, ANNEAL, QUENCH, & INSPECT	0	24	32	0.84
2065 SPIN FØRM TØ SHAPE & INSPECT	0	30	60	1:35
2066 CLEAN, ANNEAL, QUENCH, & INSPECT 2067 FINAL FORM SPIN & INSPECT 2068 CUT&TRM \$-0P'NG, DEBUR&INSP.	0	24	32	0.84
2067 FINAL FØRM SPIN & INSPECT	0	30	60	1.35
2068 CUT&TRM \$-ØP'NG, DEBUR&INSP.	0			
2069 CLEAN.H-TREAT.AGE.INSP & STØRE	0	30	54	1.26
2070 MASK, CHEM-MILL, DEBURR, & INSP. 2071 CLEAN, ANØDIZE, & INSP. 2072 WEIGH & STØRE 2073 WELD JAMB & INSPECT	7.8	90	0	9 • 15
2071 CLEAN, ANØDIZE, & INSP.	0 .	18	27	0.675
2072 WEIGH & STØRE	0	5	9	0.21
2073 WELD JAMB & INSPECT	0.25	10	15	0.625
ONTA WELL CTUNC. ETTTINGS, A TRED.	0.11	3 0	1 .	0 485
2074 WELD STODSFITTINGS A THISP. 2075 GRIND ALL WELDS, DIE-PEN INSP. 2076 PERFØRM LEAK CHECK	0	60	200	3.9
2076 PERFØRM LEAK CHECK	0 • 1	10	30	0.7
2077 X-RAY ALL WELDS & WEIGH	0 • 15 0	50	3	0.945
2078 LØAD, MØVE DØME TØ ASSY AREA	0	6	12	0.27
•	***			
	130.9	3462	6788	284.65
LABØR CØST (K\$)	, (:	51.93 >	(101	•82)

5.4.1.3 Tooling

The tooling list, Table 5-23, incorporates the spinning mill for spinning domes on both the 2- and 20-per-year production rate lines and deletes the modified vertical boring mill metal spinning tools. In addition, a larger bed skin mill is incorporated to handle the larger plates of the four segment tank cylinder section.

5.4.1.4 Facilities

Manufacturing and Assembly Plants for the advanced manufacturing line are assumed to be the same as for the improved line (Line 2).

5.4.1.5 Transportation

This is the same as for Line 2.

5.4.1.6 Near-Term Pre-Manufacturing Operation

This is the same as for Line 2.

5.4.1.7 <u>Summary</u>

The cost elements for production rates of 2 and 20 tanks per year discussed in paragraph 5.4.1 are summarized utilizing MANCAN program and are shown in Tables 5-24 and 5-25.

5,4,2 SUPPORT FRUSTUM STRUCTURE (ELEMENT 1)

5.4.2.1 General

Changes in manufacturing methods tend to take place slowly except when there are unusual pressures. However, the progress in many technologies centering about the computer has set the stage for a step-wise improvement in manufacturing. The introduction of the numerically controlled machining centers is a case in point.

Table 5-23

PROPELLANT TANK STRUCTURE (Element 2)

	JOC	CE *	BLE ATC	ALLOWA SQ. FOC								
	* PER TOOL	PROD		20√YEAR	ოოო			7 7		20000		73
	*	PR		2/YEAR			-	H H			H H 4 4 4 4	-
			BF.	TANK ASSEM								
			8	Y22A								
	z	TANK	I ND	віис		×		××	×			
	4110	•	5	CAF				××	×			
	APPLICATION	AD		YSSA								
ST	AP	LKH	2G	ТЯА		×		××	×		***************************************	
00 -		COMMON BULKHEAD	N N	FWD		×		××	×			
NN NN		MMO	DOME	T∃A	×××		×	××	×××	× ×××	×× × ′	×
<u> N</u>		00		EMD	×××		×	××	×××	× ×××	×× ×	×
TOOL REQUIREMENTS/APPLICATION/UNIT COST LINE #3		DOME		TAA	×××	•	×	××	×	XXXXX	×× ×	×
	!	2) 	EMD	×××		×	××	×	XXXXX	×××	×
			L N N	COST \$/K	8.0 2.0 1.0	12.0 12.0 12.0	3250.0	350.0 100.0	125.0 50.0 100.0	30.0 2.0 5.0 7.0	20.0 4.0 1.0 1.0	75.0
TOOL REQUIR	TOOL IDENTIFICATION			NAME	Power Saw Work Platform Scribe Arm	Lathe Fixture No. 1 Lathe Fixture No. 2 Lathe Fixture No. 3	Spinning Mill—Power Shear—NC	Heat Treat Oven (25'x25'x40') Quench Tank (25'x25'x40')	Dome Rotating Tool Etch Cleaning Tank (25'x25'x12') Etch Cleaning Tank (25'x25'x40')	Jamb Ring Welder Stand Jamb Clamps Jamb Ring/Dollar Opening Trimmer Jamb Ring/Dollar Welder X-ray Unit	Spray Booth Neoprene Maskat Spray Maskant Cut Stencil No. 1 Maskant Cut Stencil No. 2 Maskant Cut Stencil No. 3 Maskant Cut Stencil No. 4	Chem Mill (25'x25'x12')
				o N	100 101 102	120 121 122	130	140 141	150 151 152	160 161 162 163 163	170 171 172 172 173 174	180

5-64

Table 5-23 (Continued)

Table 5-23 (Continued)

			CE	ATC	SQ, FOC												
		*PER TOOL	*	18	AWOJJA												
		PER 1	PROD	``	20√YEAR	444	4 4	4	01 01		01 01	ကက	ကက	1	44	-	
		*	W.		S\YEAR			·						 1	20 20	-	
			,	BLY	TANK TANK							-					
				ER.	YSSA												
		7	TANK	CYLINDER	віие												
		APPLICATION	-	5	CAF			×						××	××	×	
_		רוכ.	AD		YSSA	×××	××	×	××	××	××	××	××				
ent 2	51		LKTE	91	T∃A												
Elem	TOOL REQUIREMENTS/APPLICATION/UNIT COST LINE # 3		Dg Z	RING	FWD												
JRE (COMMON BULKHEAD	ME	Τ₹Α												
UCT			S O	DOME	FWD												
PROPELLANT TANK STRUCTURE (Element 2)					T∃A												
			DOME		FWD				······································						· · · <u></u>	ara manda ada	
				<u> </u>	X/X	40.0 80.0 8.0	00	0:0	8.0 18.0	12.0	1.0	35.0	0.0	0.0	1.0	0.0	
			<u>5</u>		COST \$/K) 4 8 3		, <u>83</u>		77		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		500.0 1000.0		150.0	
	TOOL REQUIRE	TOOL IDENTIFICATION			NAME	Bonding Gantry Heat/Pressure Dome Vacuum Bag	Bleeder Cloth	Sonic Measuring Device and Automatic Readout	Common Bulkhead Ring Butt Weld Fixture Welding Head	Common Bulkhead Lathe Fixture Ring Cutting Tool	Spreader Bars (Hoist) Load Cell	LOX Tank Weld Fixture Drill	Drill Jig Welder	Skin Mill (10'x40') Skin Mill (18'x40')	Drill Template Power Drill	Brake-40'	
					o N	280 281 282	283 284 284	285	290 291	300	310	320 321	322 323	330	340	350	

Table 5-23 (Continued)

	т	I = =		201120								
PROPELLANT TANK STRUCTURE (Element 2) TOOL REQUIREMENTS/APPLICATION/UNIT COST LINE #3	*PER TOOL	* 318, TAGE		ALLOWA SQ, FOC								
		ОО		20√YEAR	10101	8 2 2	010101		4 2	<u> </u>	9	9
	*	PRO		S\YEAR		4-1-1		+-1	7 -	нннн		
		TANK TANK								××××	××	×××
		ال	ER	YSSA		. 🗙 🗙 🛪	×××	×	××			
	z	TANK CYLINDER		віие								
	APPLICATION		δ	CAF	XXX							
	PLIC	ΑD		YSSA								
		COMMON BULKHEAD	RING	T₹A								
				FWD								
			DOME	T ₄ A				<u></u>			····	
		Ŝ	8	EMD		-						
		DOME		Τ∃Α								
APPI		8		FWD								
PROPELLANT TOOL REQUIREMENTS/	UNIT COST \$/K				35.0 5.0 60.0	$\frac{.2}{45.0}$	75.0 5.0 18.0	18.0	$\frac{1.5}{2.0}$	200.0 12.0 18.0 18.0 50.0	100.0	40.0 10.0 2.0
	TOOL IDENTIFICATION	NAME		Segment Trim Fixture (Small) Power Cutter Segment Trim Fixture (Large)	Spreader Bars Longitudinal Weld Fixture Welder Head	End Trim/Ring Weld Dolly Weld Fixture Welder Head	X-ray Unit	Hoist Spreader Bar Load Cell	Tank Assembly Tower Heat Blanket Welder Head X-ray Unit Hoisting Yoke and Crane	Hydrostatic Test Equipment Degreaser	Tank Dolly Hoist Yoke Load Cell	
				o O	360 361 362	370 371 372	380 381 382	410	420	430 431 433 433 433 433	440 441	450 451 452

Table 5-24 Manufacturing Cost Analysis

Table 5-25 Manufacturing Cost Analysis

	MAT'L G.C. MFG. TOTAL MAMUFACTURING PROCESSES COST LABOR LABOR COST ************************************	1800 1800 1800 1800 1800 1800 1800 1800	AMODIZE+EIGH-SIGRE 0 000 1800 1800 1800 1800 1800 1800 18	FIG. DOME. VERIFY MTL FOR FWD DOME VERIFY MTL FOR FWD DOME VERIFY MTL FOR FWD DOME 130 100 2000 2000 CLEAN+ANNEAL+OJEWCH+INSP CLEAN+ANNEAL+OJEWCH+INSP CLEAN+ANNEAL+OJEWCH+INSP 11 NAL FORM SPIN-STAT MTN+INSP CUT-TINAL FORM SPIN-STAT MTN+INSP CLEAN+ANDIZEL+INSP CLEAN+ANDIZEL+INSP CLEAN+ANDIZEL+INSP CLEAN+ANDIZEL+INSP TRIM-INSP TRIM-IN	GAIND ALL WELDS+DYE-PEN INSP 0 6000 X-RAFY ALL WELDS+WEIGH 15 5000 LD WN TRNSPR+WØVE F/D TØ A/A 0 600 LD WN LANSPR+WØVE F/D TØ A/A 0 5000 LD WN LANSPR+WØVE F/D TØ A/A 0 5000 LABGR (:#ST (KF) (5077-5)	######################################	64540. 100000 338500 662100 338500 662100 164540. (5077.5) (9931.5)
	TØTAL CØST (K\$)				135 51 51 51 52 54 54 55 56 56 56 56 57 56 57 56 57 56 57 57 57 57 57 57 57 57 57 57 57 57 57	35 60 27 18 90	90 72 99 84 84 135 84 135 51 126 8455
	MFG. LABOR (M/HR)	1000 2000 1220 2000 1220 9200 1000 1000				0 2600 1400 800 4000 5000	0 3200 3200 3200 9000 9000 5400 9000 9000 9000 9000 90
	0.C. LABGR (M/HR)	2000 0 0 0 0 0 0 0 0 2 2000 2 2000 2 2000 2 2000 2 2000 2 2000 3 2000 3 2000 5 2000 6 20	6000 1000 5000 500		3000 800 3000 2700 1800 1000 1500	0 1400 460 400 2000 2500	0 1600 2000 2400 3600 3600 8700 9000 2700
	MAT'L CØST (K\$)	•				80000	000000000000000000000000000000000000000
######################################	MANUFACTURING PROCESSES	1000 TANK ASSEMBLY 1001 INSPECT LAX TANK 1002 MADE FOLLT TO ASSY TANK 1003 MAUVE CYL. 10 L/T(LNTER)+INSP 1004 MELD CYL. 10 L/T(LNTER)+INSP 1006 MELD CYL. 10 L/T(LNTER)+INSP 1006 MELD CYL. 10 L/T(LNTER)+INSP 1007 MELD CYL. 10 F/D(CXIER)+INSP 1007 MELD CYL. 10 F/D(CXIER)+INSP 1009 METORSTAILS [\$51 1010 MELD STANK ASSEMBLY 1010 MELD STANK ASSEMBLY 1020 LAX TANK ASSEMBLY 1021 MATE C/8+A/D1SEAL MELD+INSP 1022 X-RAY ALL MELDS+WEIGH 1023 MADE TO AMA 1023 MADE TO AMA 1023 MADE TO AMA 1024 CARAY ALL WELDS+WEIGH 1025 SPIN FORM TO SCHIBK-SAN BLK 10 REO SHAPE 1025 SPIN FORM TO SCHIBK-SAN BLK 10 REO SHAPE 1025 SPIN FORM TO SCHIBK-SAN BLK 10 SCHIBK-SINSP 1030 GLKAN-RANGDIZE-INSP 1040 MELGH-STORE 1040 MELGH-STORE 1040 WELGH-STORE 1040 WELGH-STORE 1040 WELGH-STORE	ITAS GAIND ALL WELDS-BYE-PEN INSP 1046 PERFUNN LEAR CHECK 1047 X-RAY ALL DAME WELDS-WEIGH 1048 JUANSPART TO L/T A/A	1046 HANNSPARI IN LY AND 1046 HANNSPARI IN LY AND 1050 COMMEND BULKHEAD ASSY 1051 E (CH CLEAN AFI DOME 1052 FIT-8000 HANNSPORDER 1NSP 1054 BUT WELD Y RINGS-LK CK-RINSP 1055 ACAT WELD-LY I DOME-WGH+SIDE 1056 CAMEND BULKHEAD F/D 1061 VERIFY MIL FOR C/B F/D 1062 SCHIEF-AM BLK 10 REO SHAPE 1054 CLEAN-ARNEAL-OUTENCH-INSP 1055 SPIN FORF 10 SHAPE-1NSP 1055 SPIN FORF 10 SHAPE-1NSP	1066 CLEAN-ARN-ALAULATH NASP 1067 CLEAN-ARN-ALAULATH TRIFINSP 1068 CLIV-TRIM C.C. GRNG-DEBURR-INSP 1069 CLIV-HEAT TREAT-AGE-HNSP-SIGHE 1070 MESS-CHEM MILL-PEBURR-INSP 1071 CLEAN-ANNODIZE-INSPECT 1073 MELD DOWE TO RING-INSP 1074 GRIND ALL WELDS-DYE-FEN INSP 1075 ARNO ALL WELDS-DYE-FEN INSP 1075 ARNO ALL WELDS-DYE-FEN INSP 1075 ARNO ALL WELDS-DYE-FEN INSP	1060 RING:F/D:CORMAN BULKHEAD 1081 VERIFY MIL FOR 1 F/D Y RING 1082 PENENSINS 1063 TRIM-CLEAN-AGE+1NSP 1063 ANDIZE-REIGH-SIONE 1064 ANDIZE-REIGH-SIONE 1069 WILL SEG-SIARIGHTEN RING-INSP	COURMON BULKHEAD AFT VEKIFY THIE FOR C/B SCAIBER-SAW BLX 10 SHEAR SPIN FORM-IN CLEAN-ARMAEL-AUGUENC SPIN FORM TO SHAPE CHEAN-ANNEAL-AUGUENC FINAL FORM SPIN+SIL CUI-TRIM C/C OPPUENC CLAN-TRIM C/C OPPUENC CLEAN-ANDDIZE-INSP
ACCOUNTS OF THE WAY OF	TØTAL IS CØST (KS)	6 500 6 480 6 240 6 65 11039.5	TØTAL CØST (K\$)	16680	BTAL C#S1 (K\$) (K\$)	10.5 140.7 28.35 28.35 28.35 210 336	963.1 1200 300 1500 2468.1
######################################	UNIT NO. COST UNITS		81	4 ASSEMBLY PLANT	09515 PV-HRS	700. 9380. 1396. 1396. 9380. 14000. 22466.	118 64340. 118 80000. 20000. 12 100000
	100LING	TING YOKE & CRANE 1057871C TEST EQUIP 165257 10811/Y 1 TOKE 1 CELL	FACILITIES	SOO CANSOLIDATED MANUFACTURING &	NEAK-IERM FRE-MANUFACTURING OPERATIONS ####################################	old who. Frelininant schebules 20 Faburellity Studies 830 10EATIFY/Orden LaNG LEAD ILENS 640 ACCOUNTAIRY/ORDEN EGGEN & 9C DOCUMENT. 640 ACCOUNTAIRY/ORDEN EGGEN & PARTS SCHEBULE 640 FFU. FLANNING PERRIIDNS 670 DESIGN/PROCUME FUNLING 640 VEGGEN EVALUATION & SELECTION	EXPEDITE IN-HOUSE/PURC REVIEW PROGRESS WITH P TOTAL RECURAING
	3TAL 3ST (K\$)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 40 72 40	224 1188 1188 1188 110 110 110 110 110 110	3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 1000 2 2 4 150 120	5.6 36 36 115 116 116 120 120 108
	NO. TOTAL	v v v u − − − − − − − − − − − − − − − −	4444	0 4 4 4			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	TIND CHILD	R. SAW		0 TRANSPART FIXTURE 1 1 WELDING HEAD	G DEVICE& Acid RDDUT ING BUIT MLD FIXT E FIXTURE 9al HOIST)		0.2 SPECADER BARS 0.2 LEACITUDINAL WELD FIXTURE 45 0.2 WELDER HEAD 0.2 WELDER HEAD 0.3 A-ANT UNIT 0.4 WELDER BAR 0.5 WELDER HEAD 0.5 WELDER HEAD 0.6 WELDER HEAD 0.7 WELDER HE

5.4.2.2 Manufacturing Processes and Tooling

Eliminating the need for much conventional equipment and tooling, the advanced manufacturing Line 3 will implement a numerically controlled machining center. This will permit the replacement of skins and rings with a single forging and thereby eliminate the joining operation. The spot-welding of longerons is retained as a compromise with design in order to save raw material and to reduce machining time. However, the machining of integral longitudinal stiffeners is considered within the range of accomplishment for Line 3.

Within the decade allowed for the development of Line 3 concepts, there should be significant improvements in plastics technology. Reflecting this, the honeycomb bulkhead will be planned with ambient-temperature cured adhesive systems. This will eliminate the space furnaces or autoclaves necessary for heat curing and also will simplify tooling.

5.4.2.3 Cost Considerations

Although the numerically controlled machining center will be much more expensive than the machines it replaces, it is capable of a greater work output with fewer and simpler work-holding fixtures required. The single machine also will save floor space and eliminate material handling and scheduling problems.

5,4,2,4 Summary

The summary of costs and tooling requirements for operation of Line 3 is given in Tables 5-26 and 5-27.

Table 5-26
Manufacturing Cost Analysis, 2 Per Year, Line 3, Element 1

MANUFACTURING COST ANALYSIS 09/28/70 LINE: ADVANCED MANUFACTURING LINE (LINE 3) STRUCTURE: SUPPORT FRUSTUM STRUCTURE (ELEMENT 1) PRODUCTION RATE: '2 PER YEAR VARIATION FROM THE NOMINAL: NONE TOTAL PROGRAM LENGTH: 5 YEARS LABOR RATES-(\$/HR): PRE-MFG.- 15. ; G.C.- 15. ; MFG.- 15. UNIT NO. TOTAL COST UNITS COST (KS) (KS) MAI'L G.C. 13741 COST LABOR TOULING MANUFACTURING PROCESSES O CUMINGL MASTER FIXTURE 60 MASTER DRILL FIXTURE 70 DRILL FIXTURES 80 INSERT LOCATING FIXTURES 90 BULKHEAD ASSEMBLY FIXTURES 110 SPOT WELDER 112 WELD ELECTRADE 120 TESTING MACHINE 121 EST INTUNE 130 WELD ASSEMBLY FIXTURE 140 IGROUE INGLS & WRENCH SET 150 INSFECTION STATION 160 IRON WORKER (SUFFALD) 162 NOTCH & SHEAR DIE 170 DEGREASER 180 N/C BORTING MILL 1000 FRUSTUM ASSEMBLY 1002 VERIFY MAT'L.CLEAN, BAG FARIS 1004 MAKE SPOT WELD SPEC., INSP 1006 LØAD PARTS IN FIXTURE, WELD, INSP 1008 BØLT ASSEMBLE BULKHEAD 1009 CLEAN, IDENTIFY, INSPECT 10 10 10 4 6 15 20 0.075 1010 LØNGERØN 1012 VERIFY MATERIAL 1014 NØTCH, SHEAR 1016 DEBURR.CLEAN, ALGDINE 1017 IDENTIFY & INSPECT 24 0•075 24 0.075 0.24 6.48 1 0 • 15 0 • 5 32 0.15 0.5 16 0.24 1020 SHELL 1022 VERIFY MATERIAL 1024 RBUGH FACE, TURN, BØRE 1026 AGE, INSPECT 1028 RØUGH FACE, TURN, BØRE 1030 AGE, INSPECT 1032 FINISH FACE, TURN, BØRE 1034 DEBURR CLEAN JAUDINE 1036 WEIGH, IDENIIFY, INSPECT 6 0.3 2.5 6 0•3 2•5 0 60 0 60 0 100 40 4.5 36 0.9 0.075 0.9 0.075 1.5 0.85 0.45 170 DEGREASER 180 AVC BORING MILL 190 HOLDING FIXTURE 200 CUTTING TOBLS 210 INSPECTION STATION 212 INSPECTION INSTRUMENT 220 CLEAN & ALDDINE TANKS 230 WEIGH SCALE 2.5 250 2.8 0.1 3 0.5 15 0.5 381.5 2.5 250 1.4 0.1 3 0.5 15 0.25 TOTAL TOBLING COST (KS) 55.11 177 (2.655) LABOR COST (KS) FACILITIES TOTAL COST (KS) 500 CONSOLIDATED MANUFACTURING & ASSEMBLY PLANT 626 NEAR-TERM PRE-MANUFACTURING OPERATIONS SUMMARY OF RESULTS NON-RECURRING COSTS TJTAL CØST (NS) 10.5 6.3 10.5 7.5 16.8 7.92 LABOR (M/HR) CØST (KS) I TEM M/HRS 800 REVIEW PROGRAM DIRECTIVES RIO MFG. PRELIMINARY SCHEDULES R20 PRODUCIBILITY STUDIES R30 IDENTIFY/0RDER LONG LEAD LITEMS R40 ACCUMULATE/REVIEW ENGR & OC DOCUMENTR50 DEVELOP SUB-RASEMBLY & PARTS SCHEDULE R60 MFG. PLANTING OPERATIONS R70 DESIGN/PROGURE TOOLING R60 VENDOR EVALUATION & SELECTION TOOLING FACILITIES PRE-MANUFACTURING NON-RECURRING COST RECURRING COST MFG- PROCESSES 381•5 620 420• 700• 145-32 9688 1120. 3300 49 • 5 64 • 78 5 55-11 177 46B 3200 177 468 1400. 55-11 12988 1261.1 1120. 16.8 LABOR IN (KS) (2.655) (7.02) NAN-RECURRING TOTALS 9488 145.32 RECURRING COSTS 2750. 550. 900 EXPEDITE IN-MOUSE/PURCHASE PARTS 910 REVIEW PROGRESS WITH PROGRAM OFFICE RECURRING TOTALS 3300 TOTAL RECURRING AND NON-RECURRING PRE-MFG. COSTS= 194-82

Table 5-27

Manufacturing Cost Analysis, 20 Per Year, Line 3, Element 1

MANUFACTURING COST ANALYSIS 09/25/70 LINE: ADVANCED MANUFACTURING LINE (LINE 3) STRUCTURE: SUPPORT FRUSTUM STRUCTURE (ELEMENT 1) PRODUCTION RATE: 20 PER YEAR VARIATION FROM THE NOMINAL: NONE TOTAL PROGRAM LENGTH: 5 YEARS LABOR RATES-(S/HR): PRE-MFG.- 15. 1 0.C.- 15. 1 MFG.- 15. MAT'L 0.C. CUSI LABUR (KS) (M/HH) UNIT NO. TOTAL COST UNITS COST (KS) (KS) 100LING MANUFACTURING PROCESSES (W/HH) (K2) DO CUNTROL MASIER FIXTURE O MASIER DRILL FIXTURE TO URILL FIXTURES OU DURHLEAU ASSEMBLY FIXTURES OU OLDER CLEANING TANKS 110 SPOT WELDER 112 WELD ELECTRODE 112 WELD ELECTRODE 120 IESTING MACHINE 121 IEST FIXTURE 140 TORQUE TORLS & WRENCH SET 140 TORQUE TORLS & WRENCH SET 140 TORQUE TORLS & WRENCH SET 140 TORQUE TORLS & WENCH SET 140 TORQUE TORLS & TATION 160 POSTOR & SHEAR DIE 170 DEGREASER 140 W/C BORKING MILL 190 HOLDING FIXTURE 200 CUITING TORLS 210 INSPECTION STATION 221 INSPECTION STATION 222 OCCEAN & ALRODINE TANKS 230 WEIGH SCALE 1000 FRUSTUM ASSEMBLY 1002 VERIFY MAT'L-CLEAN-BAG FARTS 1004 MARE SPOT WELD SPEC--INSP 1006 LOAD PARTS IN FIXTURE.weld, insp 1008 BOLT ASSEMBLE BULKHEAD 1009 CLEAN-IDENTIFY-INSPECT 10 10 7.75 300 300 0 100 600 200 13.5 200 203 3 15 20 0.075 24 0.075 900 20 0.075 24 0.075 1010 LØNGERØN 1012 VERIFY MATERIAL 1014 NØTCH, SHEAR 1016 DEDURR, CLEAN, ALØDINE 1017 IDENTIFY & INSPECT 160 0 6 166 1 0.15 0.5 6 0.3 2.5 2.5 1 0 • 1 5 0 • 5 1020 SHELL 1022 VERIFY MATERIAL 1024 RBUGH FACE, TURN, BØRE 1026 AGE, INSPECT 1028 RBUGH FACE, TURN, BØHE 1030 AGE, INSPECT 1032 FINISH FACE, TURN, BØRE 1034 DEBURR, CLEAN, ALBDINE 1036 WEIGH, IDENTIFY, INSPECT 6 0.3 2.5 250 306 0 50 30. 34.5 600 9 () • 75 600 1 - 4 2.8 50 0.75 3 1000 15 8 • 5 4 • 5 0.5 15 2.5 406 100 15 0•5 200 TOTAL TOOLING COST (KS) 236-1 332.75 LABOR COST (KS) FACILITIES TOTAL COST (KS) SOO CONSOLIDATED MANUFACTURING & ASSEMBLY PLANT 620 SUMMARY OF RESULTS NEAR-TERM PRE-MANUFACTURING @PERATIONS NØN-RECURRING CØSTS MAT'L CØST (K\$) T JTAL CUST (KS) PRE-MFG. LABOR LABOR LABUR (M/HR) TGTAL COST (KS) 10.5 6.3 10.5 7.5 16.8 7.92 (M/HR) (M/HR) ITEM M/HRS TOGLING FACILITIES PRE-MANUFACTURING NON-RECURRING COST RECURRING COST MFG. PROCESSES 800 REVIEW PROGRAM DIRECTIVES 810 MFG. PRELIMINARY SCHEDULES 820 PRODUCIBILITY STUDIES 830 IDENTIFY/0RDER LONG LEAD ITEMS 840 ACCUMULATE/REVIEW ENGR & OC DOCUMENT. 850 DEVEL JP SUB-ASSEMBLY & PARTS SCHEDULE 860 MFG. PLANNING OPERATIONS 870 DESIGN/PROGURE TOOSLING 880 VENDOR EVALUATION & SELECTION 381•5 620 700. 420. 700. 145-32 500. 1120. 332+85 236-1 528 • 3200 • 236-1 1770 4680 1974-67 1400 1120. 14.8 (26.55) (70.2) LARGE IN (KS) NON-RECURRING TOTALS 9688 145.32 RECURRING COSTS 900 EXPEDITE IN-HOUSE/PURCHASE PARTS 910 REVIEW PROGRESS WITH PROGRAM OFFICE 27500. 5500. 412.5 82.5 495 33000 RECURRING TOTALS TOTAL RECURRING AND NON-RECURRING PRE-MFG. COSTS=

5.5 MANUFACTURING LINE DIFFERENCES

The manufacturing line and facility differences starting with the state-of-the-art manufacturing Line (Line 1), progressing to the Improved Manufacturing Line (Line 2) and ending with the Advanced Manufacturing Line (Line 3) are shown for the 2- and 20-per year production rates for each of the structural elements in Tables 5-28 and 5-29.

Alternate differences for consideration as the study progresses include, for structural Element 2, the cost, quality, buy-off, and feasibility of rolling the entire cylinder section from an aluminum billet and the use of a diffusion bonded structure to replace the bonded honeycomb in the common bulkhead.

Differences between one manufacturing line and another may not necessarily reduce cost but may indicate a worthwhile trade-off of overall cost versus quality. For example, changing the manufacturing process of the fuel tank domes from welded segments to a total dome which is made by a shear spinning process from a single piece of metal may not result in a cost reduction; however, quality is certainly improved by the elimination of 150 feet of welds that must be ground smooth, X-rayed, dye penetrant inspected, and pressure tested for leakage. These requirements alone indicate the impact on quality by the elimination of welding.

Table 5-28 Structures Element No. 1, Manufacturing Line Differences

Item	State-of-the-A: Line	State-of-the-Art Mfg Line Line 1	Improved Mfg Line Line 2	Mfg Line e 2	Advanced Mfg Line Line 3	Mfg Line e 3
Production Rate —	2 Per Year	20 Per Year	2 Per Year	20 Per Year	2 Per Year	20 Per Year
Skin	Roll-Form 4 Pieces	Same	Roll-Form 4 Pieces	Stretch Form Size From 1 Piece Roll		
Longeron	Brake-Form Saw Notch Joggle	Use Extrusion Punch Notch Joggle	Brake-Form Saw Notch Joggle	Use Extrusion Joggle, Notch (Shear Combi- nation, Die, Punch Die)	N/C Machined Complete From Roll Forging Spot-Weld Assembly Longerons	ed om sembly
Rings	Mach From 1 Piece Forging	Mach From Multiple Piece Forging	Mach From Multiple Piece Forging	Same		
Honeycomb Bulkhead	Bonded Honeycomb	Same	Same	Same	Ambient Pressure and Temperature Bonding	ire and Temp-
Assembly	Rivet	Same	Roll-Spot Weld	Same	See Above	See Above
Facilities Consolidated Plant – Shared with Other Programs	×	×	×	×	×	×

X = Yes

Table 5-29 Structures Element No. 2, Manufacturing Line Differences

Item	State-of-the-Art Mfg Line Line 1	Art Mfg Line e 1	Improved Mfg Line Line 2	Mfg Line e 2	Advanced Mfg Line Line 3	Mfg Line e 3
Production Rate —	2 Per Year	20 Per Year	2 Per Year	20 Per Year	2 Per Year	20 Per Year
Domes (4)	Stretch Formed Welded Gores (9 Gores/Dome)	Same	Spin Formed	Spin Formed	Spin Formed	Spin Formed
Rings (4)	Stretch Formed Segments	Same	Same	Same	Same	Same
	(4 per Ring) Welded*	Welded	Welded	Welded	(Improved) Welded	(Improved) Welded
Common Bulkhead	Bonded Honeycomb	Same	Same	Same	Same	Same
Tank Cylinder	Machine Milled Brake Formed	Same	Same	Same	Same	Machine Milled Brake Formed
	Segments (1) Welded	Welded	Welded	Welded	(Improved) Welded	Segments (*) (Improved) Welded
Assembly Cylinder to LOX Tank; Cylinder to Upper Dome; Jamb Ring Dollar	Welded	Welded	Welded	Welded	(Improved) Welded	(Improved) Welded
Facilities Fabrication Plant	Yes	Yes	1	I	1	1 -
Consolidated Plant	2	201	_ Yes	Yes	Tes	Yes

*State of the Art Welding Unless Otherwise Noted.

SECTION 6

INTERACTION ANALYSIS

6.1 INTRODUCTION

The previous chapters have presented the approach, results and details of the study calculations. It is evident from these results that the factors influencing manufacturing cost are numerous and varied; some of the more important factors are illustrated in Figure 6-1. These factors were varied using the methods described in earlier sections and the impact on cost results analyzed. Results for variation of factors one at a time and for several variables simultaneously are presented in Section 3.

The results with multiple factor variation can be categorized into two classifications:

- a. Independent (or uncorrelated) factors.
- b. Dependent (correlated) factors.

In the first case where manufacturing factors are independent, the MANCAN computer program was used for simple analysis with multiple factors. Those factors shown in Table 3-14 were initially assumed to be generally in this category, e.g., the factor 4, producibility file, is assumed independent of factor 7 for shop scheduling. The interactions which do exist between these factors are qualitative in nature and are discussed in Paragraph 6.4.

For purposes of this interaction analysis, the selected factors numbers 4, 5, and 8 which had the greatest impact on cost as illustrated in Figure 3-7, were grouped under one category, Factors. These together with seven of the other most significant parameters were selected for a quantitative interaction study:

	Parameter	Symbol
1.	Structural Element Type (Number 1 or Number 2)	${f E}$
2.	Manufacturing Line Number (Number 1 or Number 3)	N
3.	Manufacturing Rate (2 per Year or 20 per Year)	A
4.	Quantity (10 or 100)	Q
5.	Inclusion of Tax and Interest (0 or 3 percent, 6 percent)	\mathbf{T}

	Parameters	Symbol
6.	Type of Depreciation (100 percent or straight line)	D
7.	Learning Curve (100 percent or 80 percent)	L
8.	Factors (0 or number 4, number 5, number 8)	F

As discussed in the Results, Section 3, the indicated excursions in these eight parameters have the most significant impact on manufacturing costs. These parameters are decidedly interrelated and formed the basis of the quantitative interactions study. This study and results are discussed in the following section.

6.2 QUANTITATIVE INTERACTIONS STUDY

6.2.1 METHODS

Several methods were considered for associating quantitative values with the interactions between the major variables. These methods include:

- a. Parametric Study-varying parameters singly and in combinations.
- b. Multiple Regression—fitting a least-squares surface through the results and examining the covariance coefficients.
- c. Factorial Design (two-level 28 design) where all combinations of two versions of each of 8 variables were studied simultaneously.

By far, the most productive yet conventional approach was the parametric study. Results from this type of investigation are presented thoroughly in Section 3 and Appendix B. The two disadvantages are: (a) the high cost for obtaining the necessary data points (numbered in the tens of thousands), and (b) the difficulty in presenting interaction results. With the limitations of graph paper and matrices, one is hard-pressed to present or absorb results of the simultaneous variation of more than three or four variables.

6.2.2 MULTIPLE REGRESSION

Multiple regression techniques were applied using an available computer program (MRFG)⁽¹³⁾ from the General Electric timesharing library. Initial runs were used to fit the following model to a series of available observations:

$$Y - \overline{Y} = (X_1 - \overline{X}_1) \beta_1 + (X_2 - \overline{X}_2) \beta_2 + \dots + (X_p - \overline{X}_p) \beta_p$$

where:

a. X_j (j = 1...p) were selected values of the independent variables such as depreciation, taxes and interest percent, inclusion of factors, learning curve slope and manufacturing rate.

b. Y is the cost per unit in K\$.

c. The bar superscript indicates the mean values of each variable,

The multiple correlation coefficient $\rho_{\rm m}$ was determined where $0 < \rho_{\rm m} \le 1$. Least squares estimates of coefficients $(\beta_{\rm n}, \dots, \beta_{\rm p})$ were determined as well as the constant term, b₀, where

$$b_0 = y - \sum_{i=1}^{p} X_i \beta_i$$

Additional statistical parameters, including the variance-covariance matrix were computed to determine the impact of interrelationships of variables.

The initial runs, which used variables assumed to be directly (and linearly) correlated to cost, were generally inappropriate. As is evident from inspection of typical results in Appendix B, the costs do not vary linearly with the various parameters.

Several transformations of variables were considered, but these did not improve results greatly, although the multiple correlation coefficient did improve from 0.628 to 0.891 in the best case. In this (best) case for element number 2, line number 1, 20 per year rate, the following transforms were used,

 $X_1 = 100/\text{quantity produced}$ $X_2 = 1/\text{program length in years}$

The equation relating other variables was as follows:

K\$ Cost per unit =
$$18,800 (X_1) + 96849 (X_2) + 7.68$$
 (Learning Curve) - $980 (Tax Number) - 8685$.

In this case, the learning curve value was either 1.0 or 0.8, and the tax and interest number was 2 for 3 percent and 6 percent, and 1 for 0 taxes and interest.

The results, however, were of little value in determining the interactions between variables. Including a greater number of variables in the analyses only served to reduce the multiple correlation coefficients. Attention was then focused on a more comprehensive factorial design analysis described below.

6.2.3 FACTORIAL DESIGN DATA

Factorial design analysis, as described in References 14 and 15 examines all first-order combinations of selected experimental factors. For simultaneous study of two values of each factor, the number of data points required is 2^K where K is the number of factors studied, in this case 8. To minimize the number of required computer runs, equations were developed which provided a reasonabley good fit through the data by approximating the detailed calculations performed by the computer, by,

$$C = \sum_{i=1}^{n} t_i d_i \ell_i f_i G_i + R$$

where

C is the cost for a particular set of conditions, e.g., structural element, rate and quantity

t is a coefficient for inclusion of taxes and interest

and is \ \ \begin{pmatrix} 0 & for nominal case (no taxes or interest) \\ 1 & for inclusion of 3 percent taxes and 6 percent interest

d is a coefficient for variation of depreciation method and is { 1 for 100 percent writeoff assigned value < 1 for straight line

f is a coefficient for inclusion of factors
and is

1 for no factors
assigned value < 1 when factors are included

G is the cost for a subgroup of costs which comprise the total cost, C

R is the remainder

n = total numbers of subgroups

For example, for element number 2, line number 1, 20 per year and a 5 year program, the values shown in Table 6-1 are applicable.

Table 6-1
Cost Equation Factors

Types of Cost Subgroup	$G_{f i}$	t _i	d _i	$\ell_{\mathbf{i}}$	$^{ m f}_{ m i}$
Taxes and Interest	14548	1,0	1,.975	1,1	1,.795
Pre-Manufacturing Labor (R)	1500	1,1	1,1	1,.3265	1,.65
Manufacturing Labor	11305	1,1	1,1	1,.3265	1,.65
Quality Control Labor	6641	1,1	1,1	1,.3265	1,.504
Material	14182	1,1	1,1	1,1	1,.504
NR Pre-Manufacturing Labor	1040	1,1	1,1	1,1	1,.64
Facilities	22833	1,1	1,.125	1,1	1,.81
Tooling	9496	1,1	1,.55	1,1	1,.75
Remainder (R)	390 81936				
	Taxes and Interest Pre-Manufacturing Labor (R) Manufacturing Labor Quality Control Labor Material NR Pre-Manufacturing Labor Facilities Tooling	Taxes and Interest 14548 Pre-Manufacturing 1500 Labor (R) Manufacturing Labor 11305 Quality Control Labor 6641 Material 14182 NR Pre-Manufacturing 1040 Labor Facilities 22833 Tooling 9496 Remainder (R) 390	Taxes and Interest 14548 1,0 Pre-Manufacturing 1500 1,1 Labor (R) 11305 1,1 Quality Control Labor 6641 1,1 Material 14182 1,1 NR Pre-Manufacturing 1040 1,1 Labor Facilities 22833 1,1 Tooling 9496 1,1 Remainder (R) 390	Taxes and Interest 14548 1,0 1,.975 Pre-Manufacturing 1500 1,1 1,1 Manufacturing Labor 11305 1,1 1,1 Quality Control Labor 6641 1,1 1,1 Material 14182 1,1 1,1 NR Pre-Manufacturing 1040 1,1 1,1 Labor Facilities 22833 1,1 1,.125 Tooling 9496 1,1 1,.55 Remainder (R) 390	Taxes and Interest 14548 1,0 1,.975 1,1 Pre-Manufacturing 1500 1,1 1,1 1,1 1,.3265 Labor (R) 11305 1,1 1,1 1,1 1,.3265 Quality Control Labor 6641 1,1 1,1 1,1 1,.3265 Material 14182 1,1 1,1 1,1 NR Pre-Manufacturing 1040 1,1 1,1 1,1 Labor Facilities 22833 1,1 1,.125 1,1 Tooling 9496 1,1 1,.55 1,1 Remainder (R) 390

The values in column G_i for this example are the same as the second column of Table 3-6. The selection of the two values for the coefficients t_i , d_i , ℓ_i , and f_i is determined by inclusion of the factors in the equation.

Tables similar to 6-1 were constructed for the other cases, equivalent to Tables 3-3 through 3-6. A small time-sharing computer program was developed to rapidly compute the needed values listed in Table 6-2 for use in the factorial design analysis. Checking of these results against known results indicated that this equation approximated the actual results within a few percent.

6.2.4 FACTORIAL DESIGN ANALYSIS

In a 2^K factorial design, that is, a two-level factorial design in K variables, data is analyzed for all combinations of two versions of each of the K variables. If the variable is continuous, the two versions are the high and low level of that variable. If the variable is qualitative, as in the case of the majority of the factors studied here, the two versions correspond to two types or the presence or absence of the variable.

Table 6-2
Data for (2)⁷ Factorial Design

% Relative

								K\$ Cost/	to Line #1,
E	N	\mathbf{R}	$\overline{\mathbf{Q}}$	$\underline{\mathbf{T}}$	$\overline{\mathbf{D}}$	\mathbf{L}	\mathbf{F}	Unit	2/Year
							_	A. A. B. B. A. B.	
2	1.	2	10	1	1	1		2354.7	133.972
2	9,	2	1.0	1 .	8 .	Ĩ.	Ø	1847 • 49	105-115
2	, S.	2	10	1.	4	1	1	2354.7	133.972
2	1.	2	10	E .,	1	9 .	Ø	1847-49	105-115
2	ą,	2	10	8	0	1	1	1347.86	76 • 6875
2	1	2	10	9 .	Ø	1.	Ø	1033.07	58 • 7772
2	1	2	10	1	Ø	1.	1	1347.86	76 • 6875
2	1	2	10	1	Ø	1.	0	1033-07	58 • 7772
2	9.	.5	1.0	Ø	1	1	1	1761.5_	100 - 222
	1	2	10	Ø	1	1.	0	1343.27	76 • 4265
5	9	S	10	Ø	1	1	1	1761.5	100.222
2	1	2	10	Ø	1	1.	Ø	1343,27	76.4265
2	1.	2	1.0	0	Ø	1.	1	769.49	43.7807
2	1	2	10	0	Ø	1	Ø	541 • 454	30-8064
	1	2	1.0	Ø	Ø	1.	1	769 • 49	43.7807
2	į	2	1.0	Ø.	Ø	Ī.	Ö	541 • 454	30.8064
5 5 5	ž	2	1.0	1	1	1	1	2305.8	131-19
2	3	2	10	1	1.	1	0	1812-3	103-112
2	3	2	10	1	1	1	1	2305.8	131 - 19
2	3	2	10	1	1	1	Ø	1812.3	103-112
2	3	2	1.0	1	Ø	1.	1	1402-12	79.7744
2	3	2	1.0	1	0	1.	Ø	1082.51	61 - 59
S	3	2	10	1	Ø	1	1	1402-12	79.7744
2	3	S	10	1	Ø	1	Ø	1082-51	61 • 59
2	3	2	10	ø	1	ī	1	1713.2	97 • 4738
2	3	2	10	Ø	1	Ĩ.	ø	1308.59	74-4529
2	3	2	10	Ø	1.	1.	1	1713.2	97 • 4738
2	3	2	10	Ø	1	ĺ	ø	1308.59	74 • 4529
			-	_			_	824.33	46-9009
2	3	2	1.0	Ø	Ø	1	1	591 • 389	33 • 6475
2	3 3	2	1.0 1.0	Ø	Ø	1	1	824·33	46.9009
2	3	2	1.0	Ø	Ø	1	Ø	591 • 389	33.6475
								·	
1 .	1,	. 5	10	1	L	1	1	143 - 4	131-079
1	1.	2	10	1.	1	1	0	110-805	101-284
1	1.	2	1.0	1	1.	1	1	1.43 • 4	131-079
1.	1.	2	10	1.	1	1	Ø	110-805	101.284
gard good good	3 .	2	1.0	â.	Ø	1	1	82.2275	75 • 1 622
ŧ,	î.	2	10	a .	Ø	1	Ø	61 • 2821	56.0166
9.	1	2	1.0	1	0	1	1	82-2275	75 • 1622
	1	2	10	1	0	1.	Ø	61 • 2821	56-9166
dans dans dans dans	1	2	10	Ø	1	1	8	109.5	100.091
1	9 -	2	1.0	Ø	1	8.	Ø.	81.99	74.9452
1.	100	2	1.0	Ø	9	1	9	109.5	100.091
									•

Table 6-2
Data for (2)⁷ Factorial Design (Cont.)

						Data	a tor	(2)	Factorial Design	(Cont	.)	
												% Relative
											K\$ Cost/	to Line #1,
777	NT	ъ	\circ	T	ת	т	ᄄ				Unit	2/Year
\mathbf{E}	N	$\underline{\mathbf{R}}$	<u>Q</u>	\mathbf{T}	D	L	F				Onic	2/ 1ear
9	. S	2	10	Ø	1	1	0				81.99	74.9452
1	1	2	10	Ø	Ø	1	\$				49-175	44.9427
1	1	2	10	Ø	0	1	Ø.				33-1875	30 • 3359
8	ĺ	S	1.0	Ø.	Ø	1	1					
1											49 • 175	44.9497
1	1	Š	10	Ø	Q	.1	Ø.				33.1875	30-3359
1	3	2	10	1	Ĺ	1	1				171.3	156-581
.1.	3	2	10	1	ŝ.	1	Ø				135-352	123 • 722
	3	2	10	1	1	1	1				1.71 - 3_	156-581
1	3	2	10	1	1	1	Ø				135.352	123-722
1	3	S	1.0	1	Ø	1.	1				28 - 7325	90.2491
ĩ	3	2	10	Ĩ.	Ø	1	Ø					
	3	2		1.	Ø						76-6991	70 - 1089
1			10			1	1				98 • 7325	90-2491
1	3	2	10	1	Q	1	Ø.				76 • 6991	70 : 1089
1	3	2	10	Ø	1.	1	1				126.2	115.356
1	3	2	10	Ø,	1	1.	0				97-017	88 • 681
1	3	2	1.0	Ø	1	L	1				126.2	115-356
1	3	2	10	Ø	1	1.	0				97-017	88 - 681
1	3	2	10	Ø	0	1	1				54.76	50.0548
1	3	2	10	Ö	Ø	1	ø				39 - 3225	35.9438
			10	0	8	i	1				54.76	
1	3 3	2	10	Ø	. 6	1	ø					50.0548
1.							-	4			39.3225	35 · 9 438 46 · 61 75 *
8: 8 8 8 8: 8 8 8 8 8	1	20	1.0		1	1	1	I			819-35	200.00
2	1.	20	1,0		î.	1.	1	0			570.56	32 • 4625 *
2	1	20	1.0		L	1.	0	1			688 - 381	39 • 166 _ *
2	1	20	1.0	90	1	1	Ø.	Ø			421 • 961	27.9905 *
2	6	20	10	90	1	Ø	1	1			573 · L92	32-6122 *
9	1.	20	10	90	1	Ø	1	0			373.791	21.2671 *
9	1	20	10		1	0	0	1			442-223	25 • 1606 *
6	1.	20	î		1	Ø	Ø	Ø			295-191	16.7951 *
ح م		20	10		ø	ī	ĩ	ī			673-87	38 - 3404
ç			-		Ø	9		ė			454.904	25-8821
	1	20	1.0				1	1			542.901	30-8888
5	1	20		90	Ø	1	0	-				
2	1	20		96	Ø	1	Ø	Ø.			376-304	21-4101
2	1	50		90	Ø	0	.E.	1			431.349	24.5419
2	1.	20	10	90	8	Ø	1	Ø			261 • 026	14.8513
2	1	20	14	70	0	Ø	Ø	9			300 • 38	17.0904
2	1	20		30	Ø	0	Ø	Ø			182-426	10.3723
200000000000000000000000000000000000000	3	20		70	ī	1	1	9			705-63	40 . 1474
~	3	50		00	. 1	1	•	Ø			488-216	27.7774
Z						1	ø	1			594-435	33-8208
4	3	20		90	8 .							23.9493
2	3	20		30	1	1	Q	Ø			420.932	
2	3	26		90	1	9	1	1			506-79	28 • 83 42
2	3	20		00	1	9	ı	Q			330 • 188	18 - 78 63
2	3	20	9.	99	2	9	Ø	1			395 • 595	22 - 5077
-ap-	*1*											

^{*}Values used in example in Figure 6-2 and Table 6-5.

Table 6-2

Data for (2)⁷ Factorial Design (Cont.)

					Dat	a fo	r (2)'	Factorial Design	(Cont.)	O
									/	% Relative
			_		_				K\$ Cost/	to Line #1,
\mathbf{E}	N	\mathbf{R}	$\underline{\mathbf{Q}}$	$\underline{\mathrm{T}}$	$\underline{\mathbf{D}}$	L	\mathbf{F}		<u>Unit</u>	2/Year
2	3	28	100	ge g	Ø	Ø	Q		262.905	14.9582
2	3	26	100	Ø	1	1	1		580.81	33-0456
28.88.88.88	3	20	100	0	1	9	Ø		388 • 984	22-1315
2	3	20	100	Ø	1	0	1		469. 615	26.7191
2	3	26	100	Ø	9	2	Ø		321.7	18 • 3034
2	3	20	100	0	0	1.	1		385.09	21.91
2	3	20	100	Ø	0	1	Ø		233 · 43 <i>7</i>	13.2816
2	3	20	100	Ø	Ø	Ø	1		273-825	15.5835
2	3	20	100	Ø.	Ø	Ø	Q		166.153	9 • 45343
	1	20	100	1	1	1	1		25.1	22 • 9 433
1.	1	20	100	1	1	1	Ø		17.0823	15-6146
1	1.	20	100	1	.1,	0	1		1.9 • 6177	17.9321
1	î.	20	100	1	1	Ø	Ø		13.5631	12.3977
1	1	20	100	1	0	1.	1		19-1118	17.4696
1.	1	20	100	1	Ø	1	Ø		15.565	11.2084
	1	80	100	. 1.	0	Ø	1		13.6295	12-4584
1	1	2P	1.00	1	Ø	Ø	6		8 • 74272	7.99152
.1.	9 .	20	1.00	0	.1	1	1		21-83	19-9543
1.	1.	20	100	0	1.	1	0		14-4827	13.5383
.1	1	20	100	9	1	9	1		16-3477	14-9431
.1	1.	20	100	9	1	0	Ø		10.9634	10-0214
1		20	100	0	0	1	1		15.9235	14-5553
1	1	20	100	9	0	1	0		9.7273	8-8915
1.	1	50	100	Ø	0	0	1		10.4412	2.54407
1	9	20 20	100 100	Ø	Ø	Ø 1	Ø		6.20807 24.25	5 • 67.465
.L	3 3	58	100	<u>.</u>	l l	1	1 Ø		17-3905	22 • 1664 15 • 8963
1	3	50	100	1	A. 1	ġ	1		20 - 2629	18 • 5218
9	3	50	100	1	1	Ø	ģ		14.8254	13-5516
1	3	20	100	1	Ø	1	1		16.9935	15.5334
1	3	20	100	ĺ	õ	1	å		11.6176	10.6194
1	3	20	100	Î.	Ø	ø	ĩ		13.0064	11-8888
	\$	20	100	9	Ø	Ø.	Ø		9.0525	8-27468
1	3	50	100	ø	1	1	1		19.75	18-053
ì	3	20	100	ø	î.	1	Ø		13-813	12,6262
9	3	20	100	Ø	1	Ö	ī		15-7629	14-4085
9.	3	20	100	Ø	9	á	Ø		11.2479	10.2815
good	3	20	100	9	0	1	1		12.606	11.5229
9	3	20	100	0	Ø	ì	Ø		8 • 12952	7-43101
ı.	3	20	100	Ø	Ø	Ø	1		8 • 61888	7-87832
4	3 -	20		.0	Ø	Ø	Ø		5.56444	5.08633

For the eight variables under discussion the levels shown in Table 6-3 were arbitrarily selected, which correspond to -1 and +1 values respectively.

Table 6-3
Selected Two-Level Values for Variables

<u>Variable</u>	Symbol	Low Level (-1)	High Level (+1)
Structural Element Type	E	#2	#1
Manufacturing Line Number	N	#1	#3
Manufacturing Rate	A	2/Year	20/Year
Quantity	Q	5 Years Production	
Taxes and Interest	${f T}$	0	3%, 6%
Depreciation	D	100%	Straight Line
Learning Curve	${f L}$	100%	80%
Factors	. F	None	#4, 5, 8

The data grouping for analysis is arranged to accommodate systematic analysis of results. For example, grouping of the eight runs comprising a 2³ factorial are illustrated in Table 6-4 for three variables, F, L and D.

Table 6-4
Notations for a 2³ Factorial Design

Sequence Number	<u>Variables</u>		Notatio	on.	
		F	L	D	
1	1	-1	-1	-1	
2	F	+1	-1	-1	
3	${f L}$	-1	+1	-1	
4	${ t FL}$	+1	+1	-1	
5	D	-1	-1	+1	
6	FD	+1	-1	+1	
7	LD	-1	+1	+1	
8	FLD	+1	+1	+1	

Continuing this illustration, a 2^3 example is selected for element number 2, line number 1, 20 per year from the middle of Table 6-2 (noted by asterisks) and illustrated in a cube in Figure 6-2. The eight corners correspond to the notations in Table 6-4; the values at each corner are the percent cost. Varying the depreciation (D) from 100 percent to straight line shows an average decrease from the values on the back face of the cube of (47 + 32 + 39 + 28 = 146) to the front face of (33 + 21 + 25 + 17 = 96) or an average change of -50/4 or -12.5. In the same manner, the change in learning (L) compares the left face (47 + 33 + 32 + 21 = 133) with the right (39 + 28 + 25 + 17 = 109) or an average change of -24/4 = -6. Average impact of inclusion of factors (F) is seen by comparing the lower surface (47 + 33 + 39 + 25 = 144) with the upper surface of the cube (32 + 21 + 28 + 17 = 98) or an average of -46/4 or -11.5.

In the same manner the interactions (combined impact of two and three variables simultaneously) are determined by the comparison of the values at the plane intersections for the combined variables. Results for this case are tabulated in Table 6-5, and can be expressed in the following equation, with coefficients halved for use with the selected coordinate system.

Percent Cost/Unit =
$$-5.75$$
 (F) -3 (L) $+1$ FL -6.25 D
 $+0.75$ FD $+30.25$

where the values of F, L, and D have a value of either -1 or + 1 as illustrated in Table 6-3. The constant value 30.25 is the numerical average of all points.

Table 6-5

Results for the 2³ Example in Figure 6-2

COEF.	VARIABLES	MEAS. VALUE
-11.5	r	32
∞6	L	39
2	FL	28
-12.5	D	33
1 • 5	FD	21
Ø	LD	25
Ø	FLD	17
30.25	CONSTANT	

Constant Conditions

Element	Line	Rate	Q	Taxes & Interest
2	1	20	20	No

Diagrammatic Representation of Calculated Costs Per Unit in % For all Combinations of Two Versions of Each of Three Variables (Depreciation, Learning Curve and Factors).

Figure 6-2. The 2³ Factorial Design Array

Interpretation of the absolute value of the coefficients shows the average impact of the variables on cost. In this example the primary impact comes from D, F, and L in that order followed by the interactions FL and FD which are less important.

Analyses of the 2^7 factorial design data in Table 6-2 yields the results in Table 6-6. In this example the differences between structural elements are normalized by referring all percentages to line number 1, 2 per year production rate, without taxes and interest. The production is for 5 years, e.g., 10 units for 2 per year and 100 units for 20 per year.

The equation, including only the coefficients larger than 0.5 from Table 6-6 (halved for the coordinate system) and rounding off the decimals, is as follows:

```
Percent Cost = -7.2 (F) -1.1 (L) -15.1 (D) +1.7 (FD) -9.4 (T) +0.9 (FT) +1.5 (N) -1.4 (E) +2 (NE) -1.3 (DNE) -0.9 (TNE) -31.2 (A) +3.7 (FA) -1.1 (LA) +10.7 (DA) -1 (FDA) +6.7 (TA) -2.3 (NA) +0.6 (TNA) -4.3 (EA) +0.7 (FEA) +1.6 (DEA) +0.8 (TEA) -1.6 (NEA) +0.6 (DNEA) +50.
```

The largest impact on manufacturing cost is found in the single parameters,

Manufacturing Rate (A) -31.2

Depreciation (D) -15.1

Taxes and Interest (T) - 9.4

Factors 4 + 5 + 8 (F) - 7.2

The parameter interactions of greatest significance are the following combinations.

Depreciation and Rate (DA) +10.7

Taxes and Rate (TA) + 6.7

Element and Rate (EA) - 4.3

Factors and Rate (FA) + 3.7

and combinations of less importance,

FD, FT, NE, DNE, TNE, LA, FDA, NA, TNA, FEA, DEA, TEA, NEA, and DNEA.

A significant factor in the above analyses was the introduction of two values of rate (A). Since this introduces a significant change in line tooling and processes, it is significant to look at the impact of the other variables without this overshadowing effect. An example of a 2⁶ design for 20 per year only is shown in Table 6-7.

Coefficient	Variables	Measurement Value
-14.3594 -2.26562 0.421875 -30.2656 3.48437 0.015625 -0.046875 -0.015625 -0.102375 0.015625 0.203125 0.046875 -0.078125 0.046875 -0.078125	Variables F L D FD LD FLD T LT DT FDT LDT FDT LDT FLDT N FN LN FLN	105 134 105 77 59 100 76 100 76 43 30 43 30 131
-0.046875 -0.046875 -0.296875 -0.015625 0.046875 -0.984375 -0.171875 -	FLN DN FDN LDN FLDN TN FTN LTN PLTN DTN FDTN LDTN ELDTN ELDTN EL	103 80 62 80 62 27 74 27 74 47 34 47 34 131
-0.078125 0.046875 -0.328125 0.015625 0.078125 0.734375 -0.328125 0.015625 0.140625 0.328125	FLE DE FDE LDE FLDE TE FTE LTE DTE	101 75 56 75 56 100 75 100 75

Table 6-6 Results of ${\rm (2)}^7$ Factorial Design Analysis (Cont.)

Coefficient	<u>Variables</u>	Measurement Value
-0.359375 0.046875	FDTE LDTE	3 <u>0</u> 45
0.046875	FLDTE	30
3.98437_	NE.	157
0.102375	fne	124
0.015625	LNE.	157
-0.046875	FLNE	124
-2.60937_ 0.51 <u>5</u> 625	DNE FDNE	90 70
-0.015625	LDNE.	20
-0.078125	FLONE	7 a _
-1 - 79.687_	THE.	115
0.515625	FTNE	59 _
-0-015625	LINE	115
-0 - 1 40 625	ELTNE	89
-0 • 265625 0 • 226875	DTNE FDTNE	5Ø 36
0.078125	LDTNE	50
-0.046875	FLDTNE	36
-62:3594	A	47
7-39862	FA	32
-2.26568_	LA	39
0.421875	FLA	. 28
21 • 48 44 -2 • 01562_	da Fda	33 21
0.015625	LDA	25
-9:046875	FLDA	17
13-2969_	TA	38
-0.765625	FŢA	2.6
0.015625	LTA.	31
-0.109375	FLTA	21
-0-359375	DTA.	15
0 • 328125 0 • 0 46875	FDTA LDTA	17 10
-0.078125	FLDTA	10
-4.57812_	NA.	40
0.046875	FNA	28
0 • 265625	LNA	34
-0.046875	FLNA	24
0.828125	DNA	29
-0.421875	FDNA	19
-0.01562 <u>5</u> 0.046875	ldna Flona	23 15
1.592957	TNA	1.7 33
- 6 .421875	FTNA	\$\$
ள்ளும் கூடிக்கும் குறை கூடும் நம்		

Table 6-6
Results of (2)⁷ Factorial Design Analysis (Cont.)

Coefficient	Variables	Measurement Value
-0.015625	LTNA	0.7
0.109375	FL TNA	27 18
0.046875	DTNA	55
-Ø·265625	FDTNA	13
	LDTNA	16
0.078125 0.078125	FLDTNA	- ·
-8.54687	EA.	9 ,
1.45312_	FEA	23 16
0 • 48 4375	LEA.	78 70
-0.078125	FLEA	12
3.22687_	DEA.	1.7
-0.578125	FDEA	11
0.015625	LDEA	12
0.078125	FLDEA	8
1.60937_	TEA	20
-0.453125	FTEA	13
9-915625	LTEA	15
0 - 1 40 625	FLITEA	10
0.203125	DTEA	15
-0.23A375	FDTEA	9.
0.046875	LDTEA	îø
9.946875	FLDTEA	6
-3.14062_	NEA	22
0.484375	FNEA	16
0.015625	LNEA	19
-0.046875	FLNEA	14
1.26562_	DNEA	16
0.140625	FDNEA	11
-0.015625	LDNEA	îż
-0-078125	FLONEA	8.
0.703125	TNEA	18
0.265625	FTNEA	13
-0.015625	LTNEA	14
-0 - 1 40 625	EL TNEA	îa
-0.265625	DTNEA	ĩĩ
0-226875	FDTNEA	7
0.078125	LDTNEA	8
-0.046875	FLDTNEA	5
49.9453	CONSTANT	-

Table 6-7

Elements 1 and 2-20 per Year Values as Percent of Nominal

Coefficient	Variables	Measurement Value
-25.5625	F	85
-16.125	٠	102
3 • 625	FL	73
-28 • 25	D ,	85
3.125	FD	55
-0.0625	LD	66
-0.0625	FLD	44
-16.6875	<u>T .</u>	100
2.0625	FT	68
Ø .	LT	81
-0.125	FLT	56
ؕ25	DT .	64
0 -0.1875	FDT	3 <u>9</u>
-0.0625	LDT . FLDT	45 027
-6·25	N N	105
2.125	FN	103 72
2.0625	LN	88
-0 - 4375	FLN	62
0.3125	DN	75
-0.0625	FDN	49
Ø	LDN	59
0	FLDN	39
-0 - 625	TN	86
0-125	FTN	58
0.0625	LTN	70
0.1875	FLTN	48
-0.0625	DTN	57
-0.0625	FDTN	35
0	LDTN	41
0.125	FLDTN	25
0.5	E	1.15
0.125	FE	78
-1.8125	LE	90
0.1875	FLE	62

Table 6-7
Elements 1 and 2-20 per Year Values as Percent of Nominal (Cont.)

Coefficient	Variables	Measurement Value
1 - 1.875	DE	88
-0.1875	FDE	56
-0 - 25	LDE	62
0 .	FLDE	40
0.875	TE	100
-0.125	FTE	66
-0.0625	LTE	75
0.0625	FLTE	50
0.0625	DTE	73
0.0625	FDTE	46
Ø	LDTE	48
-0.125	FLDTE	28
2.6875	NE	111
ؕ5625	FNE	80
0.875	LNE	93
-0.125	FLNE	68
•3	DNE	78
0.125	FDNE	53
0.0625	LDNE	60
0.0625	FLDNE	41
-2-0625	TNE	90
0 • 1875	FINE	63
Ø	LTNE	72
0.125	FLTNE	52
Ø	DTNE	58
Ø .	FDTNE	37
-0.0625	LDTNE	39
0.0625	FLDTNE	25
65.2812	CONSTANT	

Here the impact of learning curve (L) is more pronounced, both as single and multiple variable interactions. The impact of the factors (F) is more pronounced and differences between the two elements are less noticeable at the single (20 per year) rate.

6.3 SUMMARY OF QUANTITATIVE INTERACTIONS STUDY

The foregoing results as summarized from Table 6-6 on Figure 6-3 illustrate the strong impact of the single variables, such as depreciation, rate, taxes and interest, selected factors, and learning. Interactions of combined variables on results are less pronounced, though still quite significant, particularly those coupled with influence of changing manufacturing rate.

The interactions between the larger number of factors impacting manufacturing costs are discussed qualitatively in the next section.

6.4 QUALITATIVE INTERACTION STUDY

As shown in Figure 6-4, the major factors that control manufacturing cost are dependent upon each other and a change in one may start a chain reaction and impact several other factors to some degree.

A cost saving measure taken in one area may significantly increase cost in other areas resulting in an overall increase in manufacturing cost. For example, moving the manufacturing operation to a low tax location generally brings with it low cost facilities. However, these conditions might also necessitate moving key personnel into the area and implementing extensive training programs for utilization of the inexperienced available labor force. Learning on the job is costly; concurrent manufacturing errors result in increased component rework or scrap and material waste. Frequently under these conditions, lost time attributed to increased personnel injuries will multiply.

It is evident that each manufacturing or related factor change must be evaluated to determine total interaction impact upon overall cost. However, it is a considerable task to quantitatively evaluate the many changes in factors and their overall interactions.

A step in this direction is the matrix shown in Figure 3-7 which is applicable to the overall manufacturing and related system. This matrix is useful as a qualitative evaluation summary through the identification of factors interactions.

. Figure 6-3. Results of 2⁷ Factorial Design Averages

	1 -						,		<u> </u>	_				-	-										т		т				- 1			
SHOP LOADING	*	ļ		_		<u> </u>							ļ		_			į -											*				-1	
PROCUREMENT PRACTICES	8				L	L_	<u> </u>	L					L	Ш				Ш		<u> </u>			ļ ļ		_				*			\dashv	*	_
TECHNICAL PERFORMANCE	32							<u> </u>									L	L		L			Ll					*						
NOITASIZIRETZ	25					-																												
RELIABILITY REQUIREMENTS	8	1							П		П									П		- 1			-		-	*			\neg	$\neg \uparrow$		*
REPAIRABILITY	\$	\vdash	-				<u> </u>	_	 				-	-		-			_			عد	4						-	\neg	-	\dashv	\dashv	ᅴ
	├	\vdash		-			-		\vdash		Н							\vdash	\vdash	\vdash	及多數	*	22.5		1				-1		\dashv	\dashv	\dashv	\dashv
3417		├-		ļ													\vdash	\vdash	\vdash	\vdash		-			_					\dashv		\dashv	\dashv	\dashv
MATERIAL PHYSICAL PROPERTIES	4	_		L										Ĺ	*			\vdash		Ш									 		_	_		
ENVIRONMENTS	\$	L													*	*			Ш	Ш			*						<u> </u>					
- dannae - manned Unmamnu	2															*		ıl								*								
DESIGN PARAMETERS AND REQUIREMENTS	2	Г												*	*	*		П		П			*		*			*			*			
TONG TEVD LIEWS	5	T		_		-											*	\Box	П	П								_				\neg	\neg	_
MANUFACTURING TEST	+	\vdash		-	-		-						-	-			*	H	\vdash	*	H	*	*	*							H	*	-	\dashv
	1	Ͱ	-		-		├-	-	-	-		-	-	-			73630	-1-		T	*	-	T	_	-		\vdash				\vdash	~	-+	-
OUT OF SEQUENCE SHOITAREACE	+	┞			ļ		<u> </u>	_	_					_				*	Н	Н	ጥ			*	_					_	\vdash		\dashv	*
QUALITY CONTROL	8	L			<u> </u>								*						<u> </u>			*							*	نب	Ш	*	_	
PROGRAM CONTROL	8												*				*											À.				Ш		*
WYKE OF BUY	8												*					Н										*	¥.	*			*	
CONFIGURATION MANAGEMENT	В	Г											*						*			*						*		П		П		*
SKIFF FENERS		\vdash	 		\vdash				\vdash		*		<u> </u>	 			\vdash		\vdash	П	Н	Ť						i			*	\sqcap	\dashv	
	┼	75.00	-	-		-						-	-	-				-	\vdash	-							*		مد	-4-	1	\vdash	مك	
SITE LOCATION	+	1		<u> </u>	_	_	<u> </u>		-		*	-		-		_	\vdash	Н	Ш	\vdash	<u> </u>						T		*	*	\vdash	\vdash	*	
MECIZION	3	_				<u> </u>		L	*	Ш	ļļ		<u> </u>	L_		<u> </u>	$ldsymbol{\sqcup}$	Ш	ш	\perp				Ш					\sqcup	<u> </u>	\square	Ш		
DIZIYANCE ŁEOW MOSK	a	L		L	L		*	L	L			L				L_	L		\square		\Box								\Box			\square		
YTIJI&A3OAST	R	Γ					*		*				103			_		*	*		*	*									П		Π	
gadnos	 =						*		Г				-			Ι			\vdash			Ė							\Box		П	П	\neg	*
CLEANLINESS REQUIREMENTS	┼	╁┈		 	-	*	*			-		 								36		*		*		*	*				Н	\vdash	_	
	+	╀		├—		-	┼─	-				ļ		-		├		\vdash			-	ጥ	-	T		T	T		-	-10		Н	- Ja	_
TUOYAJ TUAJA	+-		515	ļ	ļ.,	*	*	_	<u> </u>			<u> </u>		_		<u> </u>	<u> </u>	Н	\vdash					Н				_	*	*	Н	Н	*	
PRODUCTION CONTROL	8	L		<u> </u>	*													Ш	15 A.									*				Ш		*
CHANGE CONTROL	*				*								*				*	*	Z.		*	*		*				*						*
MATERIAL FINISH	8	Γ		*				*		*				劉	*						*						*		*					
TOLERANCES	'n	Г		*	*			*	*					*	*				П		*				127				*	П	П			
NOITAMOTUA	+	t^-	-	*		\vdash		Ť	Ė							_	┢	-			 		<u> </u>	*			-		*	*	*		\neg	
	+	-	-	-	20.5	-	-	-14	-4-	4	-	*	-	-	_	23	 		\vdash	-			*	7		*	-	*	-	1		\vdash		-4-
DESIGN COMPLEXITY	+			*		32450	-	*	*	*		T	ļ	-1-			_	-	\vdash	-	\vdash		~			_		•		*	\vdash			*
MATERIAL HANDLING		<u> </u>		*			*	*		*	_	ļ			*	*	L	Ш	Ш	*						*	*		*	*		*	*	
ENTRICATION PROCESSES			*							*				*	*									*	*							*		*
AND PROCEDURES	8		*							*										*				*										*
LAYOUT VERSATILITY	2	1	*																												П			
SHUTXIH GMA SƏIL	-	T	*	\vdash	 			10																*					*	*	*		\Box	
MATERIAL STORAGE	+	 	*	-		*		200						*	*	 	 	\vdash	Н			*		r					*	*	Ė		*	
	+	╁	-			T		-		-			-	-1-	<u> </u>	-	\vdash	\vdash	Н	Н		•		-		_			1		4	ı		
AACHINE TOOLS	2	↓_	*		*	<u> </u>	ļ	<u> </u>	<u> </u>	-	_	_	_		5800000	ļ.,	<u> </u>	\vdash	Ш			_	-	*					*	*	*	-	-	
JAIREL	2	<u>L</u>	*	*		*		*		*		*	_			*			Ш	*	*	*			*				*		*	*		
SCHEDULE QUANTITY RATE	<u> </u>		*	*	*	*	*	*	*	*		*	*				*	*						*		*		*	*	*				*
enver:	2		*						A															*					*	*				
SAFETY	-	t^-	*		1	*	*	 		Т	*							М	П							*	*							*
MANPOWER REGUIREMENTS	-	*	*		*	Ė	Ė	\vdash	\vdash	\$2	Ė	*	 	-	-	 	 		Н	<u> </u>	†	 	 			H	H		\vdash	\vdash	-	2 23	\vdash	Ė
			7	ļ	~	-	-	-	-		-	 	-	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	+		-	\vdash		\vdash	\vdash		\vdash	-	 		\vdash	
MOISE LEVELS		*	\vdash		-	-			<u> </u>	 			-	-		-	\vdash	\vdash	\vdash	\vdash	-	-	-			Н	H		\vdash	Н	\vdash	*		-
AVAILABILITY OF UTILITIES		*	<u> </u>				1		<u> </u>	<u> </u>	<u> </u>					<u> </u>	<u> </u>	\sqcup	<u> </u>	<u> </u>	_	<u> </u>	<u> </u>			L_	<u> </u>				<u> </u>		Ш	
CONSTRUCTION LABOR COST	-	*		L	L	L	L			L	L	L	L	L_		L		Ĺ	L	L		L	L						L	L	L		Ll	L
SECURITY	1	*			[*	*						*								*	*						î	*
LOCAL TAXES		*								T					<u> </u>	T			Г					П			Γ-							
MOITATROSPHART	+	*	 	 	 	 	 	 	*					-		*		-	_	<u> </u>	 	 	1	 						\vdash		\vdash	*	_
	+	_		ملو	*	*	مقو	-8-		-8-	ماد	-4-	├─	-	*	+	\vdash	\vdash	\vdash	\vdash	مقر	\vdash	-	*		*	5X 1	*	*	*	مال	\vdash		-
nneti	+-	*	*	*	*	4	*	*	*	*	*	4		-	*		\vdash	\vdash	\vdash	-	*		\vdash	*		*		*	*	*	*	\vdash		<u> </u>
MANPOWER TRAINING	-	*			<u> </u>		<u></u>	<u> </u>	<u> </u>	<u> </u>		魏	_	<u> </u>	<u> </u>		\vdash	\sqcup	\vdash	<u></u>		_	 _	\perp					<u> </u>			\sqcup	*	_
WANPOWER AVAILABILITY	~	*	L		*		L		<u>L</u> .				L		<u> </u>		L			L	<u> </u>	<u> </u>	\perp						L	_				L.
PRODUCT SIZE/WEIGHT	1-	*	*	*		*	*	*	*	*		*	L	L	L	*				*	*			*		*	*		*	*	*	*		
A /	A	T				Ι	Г					<u> </u>					口	5	Г	Г		Qi y											П	Г
/										MENTS	BILLITY	9				,	OPERATION	ANAGEME		REMENTS		- UNMAN		_		rest		,			ITY & RATE			¥
FACTORS	NUMBERS	CATION	LAYOUT	4€ TOOLS	ATION	AL HANDLING	AL STORAGE	4D FIXTURES	\$	WER REQUIRE	WER AVAIL	WER TRAIN	BILITY	AL FINISH	7	COMPLEXIT	SEQUENCE	SURATION M	E CONTROL	INESS REQUI	GILITY	- MANNED		Y CONTRO	NCES	ACTURING	ORTATION	W CONTRO	OR BUY	LEAD ITEMS	ILE, QUANT		ا ج	JNICATIO
FACTORS	FACTOR NUMBERS —	SITE LOCATION	PLANT LAYOUT	MACHINE TOOLS	AUTOMATION	MATERIAL HANDLING	MATERIAL STORAGE	JIGS AND FIXTURES	GUAGES	MANPOWER REQUIREMENTS	MANPOWER AVAILABILITY	MANPOWER TRAINING	TRACEABILITY	MATERIAL FINISH	MATERIAL	DESIGN COMPLEXITY	OUT OF SEQUENCE OPERATION	CONFIGURATION MANAGEMENT	CHANGE CONTROL	CLEANLINESS REQUIREMENTS	REPAIRABILITY	RATING - MANNED - UNMANNED	LIFE	QUALITY CONTROL	TOLERANCES	MANUFACTURING TEST	TRANSPORTATION	PROGRAM CONTROL	MAKE OR BUY	LONG LEAD ITEMS	SCHEDULE, QUANTITY & RATE	SAFETY	SECURITY	COMMUNICATIONS

Figure 6-4. Interaction Matrix of Factors Influencing Manufacturing Cost

The key manufacturing parameters (which are major grouping of the factors shown in Figure 6-4) are shown in Figure 6-5 down the left side as well as across the bottom of this illustration. The factors which have a major influence of the key parameters, one-on-another, are shown in the field of Figure 6-5.

An example of the use of Figure 6-5 is seen in the dependence of both design and product identification factors upon manufacturing test and change control. A second example is seen in the dependence of program and quality control factors upon budget, schedule, and production rate. The principal impact of program control factors on quality will be influenced by available budget, schedules and planned production rate.

Other qualitative interaction factors relating to key manufacturing parameters can be seen in Figure 6-5.

									Assembly Processes and Procedures Fabrication Processes and . Procedures Procedures	Plant Facilities Interaction Factors
								Product Size and Weight Material Complexity Tolerances Material Finish Precision Material Strage Material Strage	Fabrication Processes and Procedures Assembly Processes and Procedures	Design Interaction Factors
							Product Size and Weight Repairshilty Quality Control Material Cleaniness Manned or Unmanned Tolerances Design Parameters and Requirements Equirements	Cleanliness Requirements Gauges Machine Tools Material Storage Jigs and Fixtures Material Handing Automation	Assembly Processes and Procedures Fabrication Processes and Procedures	Quality Assurance Interaction Factors
						Cleaniness Requirements Manufacturing Test	Product Size and Weight Salety	Security Safety Machine Tools Material Handing Plant Layout Sile Location Noise Level	Pabrication Processes and Procedures Assembly Processes and Procedures	Plant Safoguard Interaction Pactors
					Security Requirements Safety	Sterilization, Cleanliness Requirements	Design Complexity	Bonded Facilities	Assembly Processes and Procedures Fabrication Processes and Procedures Production Control	Communications Interaction Factors
				Plant Location	Security Requirements Safety	Cleanliness Requirements Life	Product Size and Weight Design Complexity Martial Pinish Design Parameters and Requirements	Move Distance Product Size and Weight Transportation Material Handling Site Location	Product Size and Weight	Transportation Interaction Factors
			Out-of-Sequence Operations	Change Control Configuration Management Out-of-Sequence Operations	Security Requirements	Change Control Traceability Configuration Management Out-of-Sequence Operations Manufacturing Tests	Manufacturing Test Change Coatrol	Traceability	Assembly Processes and Procedures Fabrication Processes and Procedures Out-of-Sequence Operations	Product Identification Interaction Factors
		Schedule, Quantity, Rate Make or Buy Decisions Pregram Control Quality Control Change Control Configuration Management Long-Lead Items	Site Location Product Size and Weight Quantity Design Complexity	Schedule, Quantity, and Rate Program Control	Make or Buy Decisions Quality Control Procurement Practices Program Control	Budget Quality Control Schedule Quantity and Rate Skrilization Cleanliness Requirements Reliability Program Control	Budgot Program Control Program Control Schedule, Quantity, Rate Long-Lead Items Make or Buy Manufachuring Test Salety Complexity Material Finish Design Parameters and Requirements Technical Requirements	Budget Schedule, Rate, Quantity Gauges Make or Buy Long-Lead Items Program Control Machine Tools Material Storage Security Jigs and Fixtures Material Handling Automation Plant Layout Site Location Local Taxes Construction Labor Cost Procedures Procedures Assembly Processes and Procedures	Production Control Shop Loading Program Control	Program Control Interaction Factors
	Skill Levels Make or Buy Decisions Budget Long-Lead Items Schedule	Out of Sequence Operations Manpower Training	Product Size and Weight Schedule, Quantity, Rate	Manpower Training	Manpower Training Manpower Availability Skill Levels Automation	Manpower Training	Product Size and Weight Material Design Complexity Material Finish Skill Levels Make or Buy Decisions Long-Lead Items	Manpower Availability Manpower Training Manpower Requirements Material Handling Site Location Skil Levets Piant Layout	Assembly Processes and Procedures Pabrication Processes and Procedures Manpower Hequirements Manpower Availability Manpower Skills Shop Loading	Manpower Interaction Factors
Make or Buy Decisions Long-Lend Items Skill Levels Automation	Budget Make or Bay Alternate Decision Evaluation Long-Lead Rems	Number and Schedule of Changes	Simplified Methods, Location of Operations	Communications Requirements	Safety, Security Audits	Reliability Requirements Quality Requirements	Technical Performance Materials Selection Cost Analysis	Facilities, Tooling, Equipment Availability	Manufacturing Capability Pabrication Processes and Procedures Assembly Processes and Procedures Capability	Value Engineering Interaction Factors
Manpower Factors	Program Factors	Product Identification <u>Pactors</u>	Transportation Factors	Communications	Safeguard Factors	Quality Assurance Factors	Dasign Factors	Plant Pacilities	Manufacturing and Assembly Factors	

Value Engineering

Figure 6-5. Significant Manufacturing/ Management Factors Interactions Matrix

SECTION 7

REFERENCES

- Study of Technology Requirements for Structures of Large Launch Vehicles,
 Volumes, NASA CR 73343, General Electric Company, 1 July 1969.
- 2. Building Construction Cost Data, Robert Snow Means Company, Inc., 1969.
- 3. <u>Manufacturing Plan, Saturn-IVB System</u>, Douglas Report SM-43989, McDonnell Douglas Astronautic Company, 1 March 1964.
- 4. Presentation—Study of Aerospace Structural Manufacturing Concepts, S-IVB Stage to OART and General Electric, McDonnell Douglas Astronautic Company, 27 May 1967.
- 5. <u>Manufacturing Plan for Saturn S-II Stage</u>, SID 61-365, Space Division, North American Rockwell Corporation, Reissued 1 June 1969.
- 6. Presentation—Visit by NASA/Ames and General Electric, Seal Beach, California, Space Division, North American Rockwell Corporation, 26 May 1970.
- 7. Study of Structural Weight Sensitivities for Large Rocket Systems, 2 Volumes, NASA CR 73087, General Electric Company, July 1967.
- 8. Study of Aerospace Structural Manufacturing Concepts, Phase I Report, Survey of Manufacturing Techniques and Factors, General Electric Company, Apollo Systems, Contract NAS2-5857, 18 September 1970.
- 9. Evans, R. M., et al, <u>The Development of a Technique for Improving Rocket</u>
 <u>Motor Designs Through Production Cost Analysis</u>, Batelle Memorial Institute
 for U.S. Army Redstone Arsenal, August 1967.
- 10. Review and Evaluation of Recent Structural Development Programs, NASA MSFC R-ME-IT-10044, 15 August 1966.

- 11. Mark XII Manufacturing Planning Data, Unpublished. (Selected pages of this material is included in Reference 8 above.)
- 12. <u>General Purpose Simulation, GPS</u>, General Electric Company, Information Services Department, March 1970.
- 13. Anon, <u>Statistical and Mathematical Programs</u>, General Electric MARK II Time-Sharing Bulletin 807232A, March 1969.
- 14. G.E.P. Box and J. S. Hunter, The 2^{K-P} Fractional Factorial Designs, Published by Mathematics Research Center, U.S. Army, Madison, Wisconsin, Under Contract DA-11-022-ORD-2059.
- 15. A. Hald, Statistical Theory With Engineering Applications; Page 513, John Wiley and Sons, 1962.

APPENDIX A

$\begin{array}{c} \text{MANUFACTURING COST ANALYSIS (MANCAN)} \\ \\ \text{PROGRAM LISTING}_{\underline{}} \end{array}$

APPENDIX A

INTRODUCTION

The "MANCAN" Program is written in BASIC language for the MARK II General Electric timesharing computer system. Techniques for use and explanation of language of this program are described in the following manuals, copies of which are available through the General Electric Timesharing Service Offices.

Manual 711223D—"MARK II Command System", Reference Manual published by General Electric Company, Information Services Department, revised May 1970. Manual 711224A—"MARK II BASIC Language", Reference Manual published by General Electric Company, Information Services Department, dated March 1970.

The program is written to be user-interactive. The user can access and run the program with only a knowledge (as described in Section 3 of this report) of terminal operations.

The following pages provide a listing of the "MANCAN" Program.

Manufacturing Cost Analysis (MANCAN) Program Listing

```
100 FILES *1*1*1*
118 DIM AS(139), B(4), C(33, 17)
126 DIM A(136),D(136)
136 DIM G(11.2).E(11).Z(17)
135 DIM X(17) ...
146 LET L4=L5=L6=15/1800
198 PRINT"DO YOU WANT TO RUN USING FILE INPUT? TYPE YES OR NO.":
200 INPUT XS
216 IF XS="YES" THEN 560
218 PRINT "DO YOU WANT THE OUTPUT IN 'S' OR 'E OF TOTAL COST'T";
213 PRINT "TYPE S OR Z.";
214 IMPUT YS
230 PRINT "DO YOU DESIRE USER INSTRUCTIONS? TYPE YES OR NO."
250 IMPUT.DS
260 IF DS="NO" THEN _666
               THERE ARE FIVE FACTORS WHICH MUST BE INPUT WHEN THE"
276 PRINT "
280 PRINT "NEXT QUESTION MARK APPEARS. THESE MUST BE INPUT IN THE"
296 PRINT "FOLLOWING ORDER: KI, K2, K3, K4, K5"
366 PRINT "WHERE:"
316 PRINT
320 PRINT "
              KI= LINE NUMBER (1,2,QR 3)"
330 PRINT TAB(5)1"K1=1: STATE-OF-THE-ART MANUFACTURING LINE"
346 PRINT TAB(5): "KL=2: IMPROVED MANUFACTURING LINE "
350 PRINT TAB(5); "K1=3: ADVANCED MANUFACTURING LINE "
368 PRINT "
              KE ALLOWS THE PRODUCTION RATE SELECTION"
376 PRINT "
              (K2=1 FOR 2/YR, K2=2 FOR 26/YR)"
366 PRINT "
              K3 ALLOWS THE SELECTION OF THE STRUCTURE"
396 PRINT "
               . K3=1 FOR THE TANK ASSEMBLY"
468 PRINT "
                K3=2 FOR THE MARK XII ADAPTER ASSEMBLY"
410 PRINT"
             K4 ALLOWS THE SELECTION OF A CHANGE TO BE MADE TO THE NOMIE
420 PRINT"
             MANUFACTURING LINE"
436 PRINT "
                KARIS FOR THE NOMINAL LINE"
440 PRINT "
                K4=2: ANY COMBINATION OF THE FOLLOWING CHANGES"
456 PRINT "
                K4=3: TOLERANCES ARE RELAXED BY 1862"
460 PRINT "
                K4=4: DESIGN CHANGES REDUCED BY 202"
470 PRINT "
                K4=5: PRODUCIBILITY FILE ENLARGED BY 562"
460 PRINT "
                K4=6: ISSUE JOINT ENGR/MFG/QC SPECS"
490 PRINT **
                K4#7: IMPROVED SHOP SCHEDULE & LOAD"
SOS PRINT "
                K448: REDUCE QUALITY REG'MTS BY 202"
SLO PRINT "
                K409: DECREASE PRE-MFG. LABOR RECYCLE TO 12%"
515 PRINT "
                 _.NOTE: .40% LABOR RECYCLE CONSIDERED NOMINAL*
SEE PRINT "
                X4=LQ: REDUCE DESIGN COMPLEXITY BY 20%"
522 PRINT "
                K4=11: CONSOLIDATE TO 1 FACILITY"
524 PRINT "
                Kamil: GO FROM MANNED TO UMMANNED"
526 PRINT "
                X4m13: INCREASE PRODUCT SIZE & WT. BY 202"
526 PRINT "
                K4=14: TRAIN 50% OF WORK FORCE"
536 PRINT "
                K4=15: GO FROM UNCLASS. TO CLASSIFIED SECURITY"
532 PRINT *
                K4-16: MOYE MFG. PLANT FROM ELA. TO OHIO"
540 PRINT "
              K4=17: DELETE PLANT SAFETY PROGRAM"
542 PRINT "
                X4=18: 5 YR ST. LINE DEPRECIATION"
```

Manufacturing Cost Analysis (MANCAN) Program Listing (Cont.)

```
SAA PRINT "
               K4-19: SUM OF YRS DIGIT DEPREC."
546 PRINT "
               _K4=20: INCR. SHOP LOAD 16% FOR CORRECTIONS"
556 PRINT "
              KS IS THE TOTAL PROGRAM LENGTH IN YEARS"
555 90. TO 466
566 FILE #4, "INPUT"
576 READ #4,K1,K2,K3,K4,K5,P5,K65,P,Y9
580 IF END. #4 THEN 7000
596 60 TO 645
606 INPUT KI-KE-KS-KA-KS
618 IF DS="NO" THEN 648
628 PRINTTDO YOU WANT DETAILED OUTPUT(ENTER D) OR SUMMARY(ENTER S)";
AAS INPUT PS
645 LET QSEPS
650 IF KL>3 THEN 126
660 IF KL=2 THEN 700
678 IF KIRS THEN .728.
680 LET KISS"STATE-OF-THE-ART MANUFACTURING LINE (LINE 1)"
698 60 TO 738
786 LET KISS"IMPROVED MANUFACTURING LINE (LINE 2)"
718 80 TO 738
726 LET KIS="ADVANCED MANUFACTURING LINE (LINE 3)"
738 IF K2=1 THEN 868
740 LET K6=28
756 IF XS="YES" THEN .500
760 IF DS="NO" THEN 790
778 PRINT"DO YOU WANT A LEARNING CURVE EFFECT INCLUDED? YES OR NO")
798 INPUT K6S
566 IF K6S= "NO" THEN 576
SIO IF XS="YES" THEN870
526 IF DS="NO" THEN 540
830 PRINT "ENTER THE PERCENT STANFORD CURVE DESIRED ";
840 INPUT P
856 GQ .TO 876
860 LET K6=2
876 IF K3=1 THEN 966
886 LET K3SE"SUPPORT FRUSTUM STRUCTURE (ELEMENT 1)"
898 GO .TO .932.
988 LET K3$="PROPELLANT TANK STRUCTURE (ELEMENT 2)"
916 60 TQ 932
928 PRINT "SORRY" NOT AVAILABLE YET"
936 60 TO_7666
932 IF K4<>2 THEN 968
934 IF XS="YES" THEN 942
936 PRINT "ENTER THE TOTAL NO. OF CHANGES";
938 INPUT Z1.
946 GO TO 946
948 READ #4.21
944 GQ TQ 948 ..
946 PRINT "ENTER THE" Z1 ; "CHANGE NUMBERS" ;
948 MAT Z =ZER(Z1)
```

Manufacturing Cost Analysis (MANCAN) Program Listing (Cont.)

```
950 IF XS="YES" THEN 956
958 MAT INPUT Z
954 GO TO 968
956 MAT READ #4.Z
966 PRINT
962 PRINT
964 PRINT
978 PRINT TAB(22); "MANUFACTURING COST ANALYSIS"
1(25)8AT TAB( 889
                      ***********
996 PRINT
1000 PRINT
1616 PRINT
1020 PRINT "LINE: ":KIS
1030 PRINT
1040 PRINT "STRUCTURE: "JK3S
1656 PRINT
1060 IF K2#1 THEN 1090
1070 LET K25="20 PER YEAR"
1080 GQ TO 1100
1090 LET K25="2 PER YEAR"
1186 PRINT "PRODUCTION RATE: ";KES
1118 IF K2=1 THEN 1141 .
1128 IF K65="NO" THEN 1141
1130 PRINT
1140 PRINT "PERCENT LEARNING CURVE USED:";P
LLAI PRINT.
1168 IF K4-1 THEN 1192
1170 PRINT"VARIATION FROM THE NOMINAL: NONE"
1156 GQ TO 1460
1192 PRINT "VARIATION FROM THE NOMINAL: CHANGE NO.(S) ";
1193 IF K4<>2 THEN 1208
1194 FOR I=1 TO Z1
1196 PRINT Z(1)1
1198 IF I=Z1 THEN 1284
1280 PRINT"+";
1.202 NEXT .I
1204 PRINT" "
1206 GQ TQ 1400
1208 PRINT K4
1210 GO TO 1400
1400 PRINT
1410 PRINT"TOTAL PROGRAM LENGTH: "JK5; "YEARS; NO. OF UNITS PRODUCED: "JK5#
1420 PRINT
1424 PRINT"LABOR RATES-($/HR): PRE-MFG.-": 1686+L4;": G.C.-":
1425 PRINT 1000+L5;"; MFG--";1000+L6
1426 PRINT
1436 FILE #3. "FACTORS"
1435 HAT BEAD #3.C
1436 IF K4<>2 THEN 1445
1438 FOR J=1 TO 17
```

Manufacturing Cost Analysis (MANCAN) Program Listing (Cont.)

```
1439 FOR I=1 TO Z1
1440 LET C(2,J)=C(2,J)+C(Z(1),J)
1441 NEXT I
1442 NEXT J.
1445 IF Y$42"8" THEN 1450
1448 LET PS="5"
1450 IE PS="5" THEN 1485
1466 PRINT "
                                  DETAILED CALCULATIONS"
                                  1476 PRINT "
1496 IF K142 THEN 1568
1586 IF K143_THEN_1586_
1510 IE PS="S" THEN 1540
1520 PBINT TAB(30); "PLANT NO. 1"
1536 PRINT
1540 FILE #14"LINEI"
1550 GO. TO 1590
1560 FILE #1."LINE2"
1576 60. TO 1596
158# FILE #14"LINES"
1581 99 TQ..1598.
1562 IE KL#2 THEN 1566
1563 IF K1=3 THEN 1568
1584 FILE #14"LINE4"
1585 GO. TO 1598.
1586 FILE #1."LINES"
1587 GO. TO 1598
1566 FILE #1, "LINE6"
1598 EQR 1=1 TO 8
1686 READ #1,AS(1)
1610 NEXT I
1620 IE PS="S" THEN 1665 ...
1630 PRINT TAB(54)1AS(1)1TAB(66)1AS(2)1TAB(65)1AS(3).
1640 PRINT AS(4);TAB(54);6S(5);TAB(59);AS(6);TAB(65);AS(7)
1656 PRINT"======"JTAB(54);AS(8);TAB(66);AS(8)
1660 PRINT.
1665 IE K3=2 THEN 1732
1676 IE KL=2 THEN 1716
1680 IF KI=3 THEN 1739
1690 FILE #2."DATA1"
1746 80 TO 1756
1710 FILE #2."DATA2"
1728 GO TO 1758
1736 FILE #24"DATA3"
1731 60 TQ .1756 .
1738 IF K1=8 THEN 1736
1733 IF KI=3 THEN 1738
1734 FILE #24"DATA4"
1735 60 TO 1750
```

```
1736 FILE #22"DATA5"
1737 GO TO 1750
1738 FILE #2,"DATA6"
1756 FOR N=9 TO 146
1766 READ #1.AS(N)
1778 IF END #1 THEN 1968
1785 READ #2,8(1),8(2),8(3),8(4)
1788 IF .B(K2)=0_THEN 1950_
1798 LET_C1=C(X4,B(4))+B(3)+B(K2)
1840 IF PS="S" THEN 1836
1816 PRINT AS(N); TAB(54); B(3); TAB(61); B(K2); TAB(65); C1
1815 IF K3=2 THEN 1840
1886 IF KI>1 THEN 1846
1830 IF N>83 THEN 1940
1846 LET SIESI+C!
1845 IF K3=2 THEN 1950
1850 IF KIRL THEN 1250
1860 IF N<>83 THEN 1950
1876 IE PS="S" THEN 1930
1886 PRINT
1898 PRINT TAB(38); "PLANT 1 TOOLING COST (KS)"; TAB(64); 51
1900 PRINT
1916 PRINT TAB(36) PLANT NO. 2"
1926 PRINT
1938 IF Ne83 THEN 1950
1946 LET S2=32+C1
1950 NEXT N
1966 IF PS="S" THEN 2050
1965 IF K3#2 THEN 1986
1970 IF KIEL THEN 2009
1986 LET .S2=0
1998 GQ TO 2828
2000 PRINT
2010 PRINT TAB(36):"PLANT & TOOLING COST (KS)": TAB(64):52
2020 PRINT TAB(30);"TOTAL TOOLING COST (KS)"; TAB(64); S1+52
2030 PRINT
2840 PRINT
2056 LET L@=K5+K6
2055 IF K3#2 THEN 2114
2060 IF KI>1 THEN 2100
2076 FILE #1, "FACILI"
2680 READ #1.C3.C4.C5.C6.C7.C8.C9.D1
2070 GO: TO 2120
2100 FILE #1. "FACIL2"
2116 READ #1.C3.C4
8111 60. TO 2120
2114 EILE #1, "FACIL3"
2116 READ #12C3 .
2126 IF PS="S" THEN 2165
2136 PRINT
```

```
2146 PRINT"FACILITIES", TAB( 66) ; "TOTAL COST"
2156 PRINT "=======";TAB(63);"(KS)"
2160 PRINT ...
2145 IF K388 THEN2199
2170 IE KIRI THEN 2296
2180 IF K2=2 THEN 2236
2176 LET 589C3+C(K4+14)
2206 LET 52:0
2210 LET .T598.
8828 OT. 08 8838
2230 LET 38mC4*G(K4.14)
2240 LET 32m0
2250 LET T5=0
2260 IF PS="5" THEN 2640 ...
2276 PRINT"500 CONSOLIDATED MANUFACTURING & ASSEMBLY PLANT"; TAB(63); S8
2256 60 TO .2546.
2290 IF X2=1 THEN 2358
2300 LET .T4=C9+C(K4.13)
2318 LETTS=L0+D1+C(K4.13)
2320 LET $8=C4+C(K4.14)
2338 LET .599C6+C(K4.14)
2346 80 TO 2396
2356 LET 58=C3+C(K4-14)
2366 LET 32=C5+C(K4-14)
2379 LET T4=C7+C(K4.13)
2388 LET_T5=L0+G8+C(84.13)
2370 1E.PS="5" THEN 2648
2486 CRINT"566 CLANT #_1-MANUFACTURING"_TAB(63))58
2410 281MT"600 PLANT #2-ASSEMBLY"; TAB(63); 59
2489 PRINT TAB(61)1"---
2436 PRINT TAB(63);56+59
2446 PRINT
2456 PRINT
246 PRINT"TRANSPORTATION"
2470 PRINT ......
2460 PRINT
2496 PRINT"TOR TRANSPORT 186 HILES FROM PLANT 1 TO PLANT 2"
2506 PRINT" 761 NON-RECURRING COST" JTAB(63) JT4
2516 PRINT" 702 RECURRING COST"; TAB(63); TS
2520 PRINT TAB(61)1"-----
2536 PRINT TAB(63) 174+T5
2540 2BINT
2550 PRINT
2566 PBINT"NEAR: TERM .PRE-MANUFACTURING .OPERATIONS"
2560 PRINT
2598 PRINT TAB(25)4"NON-RECURRING COSTS"
2668 PRINT TAB(25)3"-----
2610 PRINT
2628 PRINT TAB(18);"ITEH"; TAB(56);"M/HRS"; TAB(66);"TOTAL COST"
```

```
2638 PRINT TAB(63);"(K$)"
2649 FILE #1, "LIPREM"
2658 FILE #2, "DIPREM"
2660 MAT READ #2,6
2670 FOR N=1TO 11
2688 READ_&LeAS(N)
2696 IE N <> 10 THEN 2770
2700 IF PS="S" THEN 2770
2710 PRINT TAB(56)!"-----"ETAB(66)!"-----
2728 PRINT TAB(27); "NON-RECURRING TOTALS"; TAB(49); 56; TAB(61); 55
2736 PRINT
2740 PRINT TAB(30) A"RECURRING COSTS"
2750 PRINT TAB(30); "----"
2760 PRINT
2776 IF N>9 THEN 2806
2780 LET L3=L4
2785 IF K3=2 THEN 2895
2798 80 TO 2898.
2866 LET L3=L4+L6
2802 IF K3=2 THEN 2816
2819 IF K2=1 THEN 2898
2814 GO TO 2826
2816 IF K2=1 THEN 2895
2826 IR K65="NO" THEN 2876 .
2836 LET S=LOG(P/166)/.6931
2838 LET E2=6
2840 FOR I=1 TO INT((20+K5)+10+.5)/16
2845 LET E1=(1)**S
2848 LET E2=E2+E1
2850 NEXT I
2852 LET F=(E2)/(20+K5)
2846 GB TO 2886
2870 LET FE1
2660 LET L3=F+L3
2885 IF K3=2 THEN 2895
2898 LET E(N)=G(N,2)+C(K4,17)+L3
2892 GO TO 2986
2895 LET_E(N)=G(N,1)+C(K4,17)+L3
2980 IE PS="S" THEN 2920
2918 PRINT AS(N) JAB( 49) JE(N) /L4 JTAB( 61) JE(N)
2926 IF N>2 THEN 2966
2930 LET $5=$5+E(N)
2940 LET .S6=S5/L4
2950 GQ .TQ .2980
2960 LET $7=57+E(N)
2978 LET .U6=57/L4
2988 NEXT N
2990 IF PS="S" THEN 3065
3000 PRINT TAB(50), "-----"; TAB(60); "-----"
3818 PRINT TAB(29); "RECURRING TOTALS"; TAB(49); U6; TAB(61); 57
```

```
3626 PRINT
3036 PRINT TAB(16) ATTOTAL RECURRING AND NON-RECURRING PRE-NFG. COSTS="8
3646 PRINT TAB(62):35+37
3656 PRINT
3648 PRINT.
3045 IE K348 THEN 3148
3676 IE K1#8 THEN 3116
3656 IF KI=3 THEN 3136
3090 FILE #1,"LINEIP"
3166 60. TO .. 3165
3110 FILEFILMESP"
3126 60 TQ.3185.
3130 IF. K2=2 THEN 3160
3146 FILE #1."LINE2P"
3150 GO. TO 3185
316R FILE #1,"LINSAP"
3161 GO TQ .. 3185...
3168 IE KLAS THEN 3171
3163 IE K1=3 THEN 3178
3164 IF K2=2 THEN .3168
3165 FILE #1,"LINESE"
3166 FILE #8."DATA4P"
3167 90. TO 3185
3168 FILE #1."LINGAP"
3169 FILE #2."DAT4AP"
3178 60 TQ 3185
3171 IF K2=2 THEN 3175
3178 FILE #1, "LINESP"
3173 FILE /2,"DATA5P"
3174 60 TO 3165
3175 FILE #1. "LINSAP"
3176 FILE #2,"DATSAP"
3177 GO TO 3185
3178 FILE #1. "LINE 6P."
3179 IF. K2=2 THEN 3183
3181 FILE #2,"DATA6P"
3182 60. TO 3185
3163 FILE #2, "DATSAP"
3185 DELIMIT #14(LE)
3186 IF K342 THEN 3578
3155 IF_K1>1 THEN 3578
3196 EOR . 1=17012.
3286 READ #1.AS(1)
3216 NEXT 1
3220 IE P4="3" THEN 3310 ...
3236 PRINT TAB(35);AS(1);TAB(44);AS(2);TAB(53);AS(3);TAB(58);
3240 PRINT AS(A) ATAB(65) AS(5)
3256 PRINT AS(6):TAB(35);AS(7);TAB(43);AS(8);TAB(52);AS(8);
3268 PRINT TAB(59)JAS(9)JTAB(66)JAS(7)
```

```
3288 PRINT TAB(52);AS(11);TAB(46);AS(16)
3276 PRINT
3398 PRINT AS(12)
"GIATAD" . 2. "JATAIP"
3350 FOR N=13_TO 124
3360 LET LA=K5+K6
3376 LET LIEL5+L0
3380 LET L2=L6+L0
3390 READ #1.AS(N)
3395 READ #2.D(1).D(2).D(3).D(4).D(5).D(6).D(7)
3466 IE N=23 THEN 3526
3416 IE NEZZ THEN 3526
3426 IE NEAL THEN 3526
3436 IE NEAR THEN 3520
3440 IE N#61 THEN 3520
3450 IE NA68 THEN 3520
3460 IE NABL THEN 3520
3470 IE NARS THEN 3520
3480 IF N#183 THEN 3520
3490 IF N=111 THEN 3526
3500 LET M=#-12-L
3519 60 TO 3996
3520 LET LaL+1
3522 FOR 151TQ 7
3524 BACKSPACE #2
3526 NEXT 1
3536 IF PS="S" THEN 3560
3540 PRINT
3550 PRINT AS(N)
3560 60 TO 4380 ...
3576 FOR I=1TO 11
3580 READ #1.AS(1)
3590 MEXT I
3680 IE PS="S" THEN 3665
3618 PRINT TAB(39);AS(1);TAB(46);AS(2);TAB(53);AS(3);TAB(61);AS(4)
3628 PRINT AS(5)ATAB(39)AAS(6)ATAB(45)AAS(7)ATAB(52)AAS(7)ATAB(62)AAS(6)
3636 PRINT A$(8); TAB(39); A$(9); TAB(45); A$(10); TAB(52); A$(10); TAB(62);
3649 PRINT AS(9)
3650 PRINT
3668 PRINT.AS(11)
3665 IF X3=2 THEN 3764
3678 IF KI=3 THEN 3700
3686 FILE #24"DATA2P"
3699 GQ TQ..3764
3780 IF K2=2 THEN 3736
3710 FILE #24"DATA3P"
3720 60. TO 3764
3730 FILE #2. "DAT3AP"
3764 IF_K3#2 THEN .3772
3776 FOR N=12 TO 139
```

```
3771 GO TQ .3760.
3772 IF K1=2 THEN 3776
3773 IF KI=3 THEN 3776
3774 FOR N=12 TO 46
3775 GO_TO .3786
3776 FOR N=12 TO 47
3277 60_TO..3760
3778 FOR N=12_TO. 38
3788 LET LE=K5+K6
3796 LET L1=L5+L6
3586 LET L2=L6+L6
3618 READ #1.45(N)
3511 READ #2.0(1).0(2).0(3).0(4).0(5).0(6)
3812 IF K3=1_THEN 3826
3514 80 TO 6266.
3626 IF N=22 THEN 3936
3636 IE N#84 THEN 3936
3846 IE NR45 THEN 3930
3556 IE NESS THEN 3936
3560 IE N=69 THEN 3936
3876 IE N#76 THEN 3936
3550 IF N=23 THEN 3930
3690 IF M=100 THEN 3936
3986 IF N=113 THEN 3936
3918 IF N=181 THEN 3936
3920 GO .TO .3958
3930 LET LEL+1
3732 FOR 1:1 TO 6
3934 BACKSPACE #2
3936 NEXT 1
3940 IE. PS="S" THEN 4308
3956 PBINT
3266 PRINT AS(N)
3976 BO TO 4366
3986 LET MEN-LIEL
3998 IE K2=1 THEN 4888
4888 IF K63= "NO" THEN 4858
4010 LET SELOG(P/100)/.6931
4020 LET FRE
4030 LET F=E.
40 40 BO .TQ .40 68
4650 LET FRI.
4060 LET LIBE+L1
4070 LET LEFFLE
4660 LET TIELE+D(1)+C(K4.D(2))
4100 LET TEML1+D(3)+C(K4,D(4))
4126 LET T3=L2+D(5)+G(K4,Q(6))
4140 LET A(H)=[NT((T1+T2+T3)+1606+.5)/1006
4141 LET T6=INT((T8/L5)+1998+.5)/1898
4142 LET T7=INT((T3/L6)+1000+.5)/1000
```

```
4158 IF PS="5" THEN 4238
ALGO PRINT .. AS(N);
4145 IE K3#2 THEN 4216
ALPO PRINT DC7>1TAB(64)1A(H)
4220 GO TQ. 4250.
4238 IE KIRL THEN 4250
4235 IE 83=2 THEN 4250
4248 IF D(7)=2 THEN 4318
4250 LET 53=53+A(M)
4268 LET MI=MI+TI
4270 LET 91=91+T6
4280 LET 93=93+T7
4285 IF Ka=2 THEN 4366
4290 IE KIRI THEN 4386
4308 IF K3=2 THEN 4302
4301 60 TO 4366
4382 IF K1=2 THEN 4354
4383 IF K1=3 THEN 4352
4384 80 TO 4356
4318 LET S4=S4+A(H)
4320 LET M2=M2+T1
4338 LET 92=92+T6
4346 LET 04=94+T7
4350 80 70 4380
4352 NEXT N_
4353 GQ TO 4396
4354 NEXT N_
4355 GQ_TO 4390
4356 NEXT N_
4357 80 TO 4398
4360 NEXT N____
4370 GQ_TO 4390
4380 NEXT N.
4396 IF KIEL THEN 4436
4400 LET $450
4410 LET 92=0
4420 LET 94=0
4438 LET TESI+S2+S3+S4+S5+S7+T4+T5+S6+S9
4431 LET 95=INT(91+L5+1000+.5)/1000
4432 LET 96=INT(93+L6+1000+.5)/1000
4433 LET 97=INT(92+L5+1000+.5)/1000
4434 LET, 98=INT(Q4+L6+1000++5)/1000
4435 IE YS<>""" THEN 4446
4436 PRINT
##37 PBINT TAB(20);"TOTAL PROGRAM COST "T"=";T+1868;"DOLLARS"
4438 PRINT
```

```
4439 60 SUB 5316
4440 IE PSR"S" THEN 4600
4445 IF KARR THEN 4460
4458 IE.KL=1.THEN 4498
4466 PRINT TAB(36) 1 -----
4470 PRINT TAB(39) MISTAB(47) 1913 TAB(54) 1931 TAB(42) 153+54
4474 PRINT TAB(26); "LABOR GOST (K$)"; TAB(43); "("; QS)
4475 PRINT ")"; TAB(55); "("; Q6;")"
4456 BQ.TQ 4666
4490 PRINT
4500 PRINT TAB(43); "PLANT ("ATAB(53); "PLANT 2"; TAB(65); "TOTAL"
4510 PRINT TAB(43)4"=----@"!TAB(53);"------"!TAB(65)4"----
4526 PRINT"MANUEACTURING PROCESSES";K5;"YR COST-(K$)";TAB(46);$3;
4536 PRINT TAB(50);54;TAB(62);53+54
4546 PRINT TAB(5); MATERIAL COST-(KS)"; TAB(46); M1; TAB(50); M2;
4556 PRINT TAB(42) M1+M2
4568 PRINT TAB(5); "QUALITY CONTROL LABOR-(M/HRS)"; TAB(40); Q1;
4576 PRINT TAB(54)4921TAB(62)491+92
4578 PRINT TAB(27);"+(K$)", TAB(38); 95£TAB(42); 97, TAB(62); 95+97
4588 PRINT TAB(5); MANUFACTURING LABOR-(M/HRS)"; TAB(40); 93; 4598 PRINT TAB(50); 94; TAB(62); 93+94
4572 PRINT TAB(25);"-(K$)";TAB(36);Q6;TAB(49);Q6;TAB(62);Q6+Q8
4686 PRINT
4616 PRINT
4628 PRINT TAB(25); "SUMMARY OF RESULTS"
ASAS PRINT
4656 PRINT
4660 PRINT TAB(21); "MAT'L"; TAB(31); "Q.C."; TAB(41); "MFG."; TAB(49);
4670 PRINT"PRE-MEG."; TAR(61); "TQTAL"
4680 PRINT TAB(21)&"COST";TAB(31);"LABOR";TAB(41);
4690 PRINT "LABOR";TAB(51);"LABOR";TAB(61);"COST"
4692 IE YS="S" THEN 4700
4694 PRINT TAB(21)4"(XT)"4TAB(36)4"(XT)"4TAB(46)4
4696 PRINT "(ZT)"; TAB(50); "(ZT)"; TAB(61); "(ZT)"
4675 GO TO 4720 ...
4700 PRINT TAB(21);"(KS)"; TAB(30);"(N/HR)"; TAB(40);
4716 PRINT "(M/HR)"; TAB(56); "(M/HR)"; TAB(61); "(KS)"
4726 PRINT
4730 PRINT"TOOLING", TAB(60) $1+52
ATAB PRINT . "FACILITIES"; TAB( 60 ); 58+59
4745 IF K3+2 THEN 4796
4756 IE KL>1_THEN 4796
4760 PRINT"TRANSPORTATION"
47.70 PRINT" NON-BECURRING COST"; TAB(60); T4
4788 PRINT"
              ...RECUBRING_COST"; TAB( 6Ø); T5
4826 PRINT" NON-BECURRING COST"/TAB(47)/S6/TAB(60)/SS
ATTO PRINT"PRE-MANUFACTURING"
4628 PRINT"HFG. PROCESSES"; TAB(26); H1+M2; TAB(36); 01+02;
```

```
4639 PRINT TAB(40)103+941 TAB(60)153+54
4846 PRINT TAB(19)3"-----"STAB(29)3"-----"STAB(39)3
4868 PRINT TAB(26)JM1+W2,TAB(38)JQ1+Q2,TAB(48)JQ3+Q4,TAB(58)J
4670 PRINT .. U6+S6; TAB(60); T
4872 IE.YS="2" THEN 4879
4874 PRINT
4876 PRINT"LABOR IN (KS)":TAB(27);"(":95+97;")":TAB(39):"(":
4877 PRINT 96+983"2"1 " UNIT COST:"JT/(K5+K6)
4879 IE K3=2 THEN 5050
4880 IE KI>1 THEN 5050
4696 PRINT
4900 PRINT ...
5050 FQR I=1 TO 6
5969 PRINT
SOZO NEXT I
5072 IF 95="5" THEN 5080
5073 IF Y5="5" THEN 5080
5074 LET PS=0$
5076 LET YS="77"
5078 GO TO 1460
5686 IF XS="NO" THEN 7666
5690 RESTORE #1
5100 BESTORE#2
5110 RESTORE 23_...
5120 LET L=$1=52=53=54=55=57=T4=T5=58=59=M1=M2=Q1=Q2=Q3=Q4=U6=56=0
5386 60 .TO .578 ..
5316 LET 51=51+100/T
5320 LET $2=$2*100/T
5330 LET $8:58*100/T
5340 LET $2=$2+100/T
5356 LET .T4=T4+100/T
5360 LETTS=T5+100/T.
5370 LET U6=U6+L4+180/T
5388 LET 56=56+L4+188/T
5396 LET $5=55+106/T
5400 LET S7=S7+100/T
5418 LET MI=MI+100/T
5420 LET M2=M2+186/T
5430 LET 01=01+L5+100/T
5440 LET 92=92*L5*100/T
5450 LET 93=93+L6+100/T
5460 LET 9489446+188/T
5470 LET 53-53+100/T
5488 LET $45544168/T
5498 LET_T=180
5500 BETURN
6086 PBINT"MANUEACTUBING PROCESSES" KS; "YR COST-(XT)" TAB(40) 53;
6010 PRINT TAB(50); $41.TAB(62); $3+$4.
6020 PRINT TAB(5); "MATERIAL COST-(XT)"; TAB(40); M1; TAB(50); M2;
```

```
6030 PRINT TAB(62)3M1+M2 ...
6040 PRINT TAB(52)3M9UALITY CONTROL LABOR-(XT)M3TAB(46)3Q13
6050 PRINT TAB(50)3Q23TAB(42)3Q1+Q2
6866 PRINT TAB(5); MANUFACTURING LABOR-(2T)"; TAB(48); 93;
6070 BBIN TAB(50)104ETAB(62)103±04
6050 PRINT "FACILITIES: MFG. 4 ASSEMBLY-(%T)"; TAB(46); 58;
4898 PRINT TAB(56); 59; TAB(62); 58+59
6188 PRINT "TOOLING-(%T)"; TAB(48); $1; TAB(58); $2; TAB(62); $1+$2
6118 PRINT"TRANSPORTATION-(XT)" TAB(41) FROM
                                                                 TO"; TAB( 62); T4+T5
6115 RETURN
6866 IF KIER THEN 6860
6210 IF K1=3 THEN 6300
6220 IF N=22 THEN 3930
6230 IF N=29 THEN 3930
6240 IF N=35 THEN 3936
6250 GQ TQ 3988.
6266 IE N=23 THEN 3936
6876 IE N#30 THEN 3930.
6880 IF N=39 THEN 3930
6290 GQ TQ..3966..
6386 IF N=17 THEN 3936
4316 IF N=22 THEN 3936
6326 GO TO 3986
7866 END
```

APPENDIX B

LISTING OF COMPUTER OUTPUTS (BY RUN NUMBER) USED IN DETERMINING
THE IMPACT OF CHANGES TO FACTORS ON MANUFACTURING COST

APPENDIX B

INTRODUCTION

This Appendix provides a detailed tabulation of the results of the significant computer runs from this study. References to changes in the manufacturing processes are made by number and refer to those changes tabulated in Figure B-1. Cost groups are noted in Figure B-2.

	·
<u>Change Number</u>	Change Description
3	Relaxed Tolerances by 100%
4	Reduce Number of Design Changes by 20%
5	Enlarge Producibility Information File by 50%
6	Issue Joint Engineering/Manufacturing Quality Control Specifications
7	Improve Shop Schedule and Load—15% Less Changes
8	Reduce Quality Required by 20%
9	Decrease Pre-Manufacturing Labor Recycle From 40 to 12%
10	Reduce Design Complexity by 20%
11	Consolidate Facilities—One Factory
12	Manned to Unmanned
13	Increase Product Size and Weight 20%
14	Train 50% of Work Force
15	Security—Nonclassified to Classified
16	Site Selection—Labor Cost Florida to Ohio
17	Delete Plant Safety
18	Depreciation—Straight-Line F-1 to "0" in 40 Years F-2 to "0" in 14 Years T-1 + T-2 to "0" at End of Program
19	Depreciation—Sum of Digits F-1 to "0" in 40 Years F-2 to "0" in 14 Years T-1 + T-2 to "0" at End of Program
20	Increase Shop Load 10% for Discrepancy Corrections

Figure B-1. Change Identification

Co	ost Group	Cost Group
Number	Designation	Title
	assar is a Cochili dici ninno quan com compresso que testa ^{com} la resulta de comita de la servició de la comi	mentaling global programments of proceeding the process of the pro
1	M 1	Raw Material
2	M 2	In-Process Material
3	Ι1.	Inspect-Form, Dimension
4	I 2	Inspect—Weld, Bond
5	I 3	Inspect-Assemble, Other
6	S 1	Machining
7	S 2	Forming
8	S 3	Joining
9	T 1	Tooling, Material, Handling
. 10	T 2	Jigs and Fixtures
11	A 1	Test-Accept
12	D 1	Storage
13	D 2	Transport
14	F 1	Facilities—Buildings
15	F 2	Furnaces and Machine Tools
16	P 1	Processing—Chem Mill, Anneal, Cure
17	L 1	Pre-Manufacturing Labor

Figure B-2. Cost Group Identification

は、ならまる。	Baseline Run													
Togyan Length,	ವ	വ	ວ	EG.	വ	വ	ഉ	5	ವಿ	വ	īĊ	ល		
xe, ooo, replaced	z	z	z	z	Z	Z	z	z	Z	z	Z	z		
\$\$\frac{\partial \text{3.7} \text{3.7} \text{3.7} \text{3.7} \text{3.7} \text{3.7} \text{3.7} \text{3.7} \text{3.7} \text{3.7} \text{3.7} \text{3.7}	Z	z	Z	z	Z	Z	z	Z	z	z	Z	z		
Test ning	100	100	100	100	100	100	100	100	100	100	100	100	 	
Mehhod Mehhod	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%		
Tooduchion Rate Outshirty Y aste Outshirty Y aste Outshirty A troduced Description of the troduced	10	100	10	100	10	100	10	100	10	100	10	100		
	67	20	73	20	67	20	87	20	73	20	ଷ	20		
Element Munber	Н		7	87	က	က			22	87	က	က		
Elen.	1			-		-	87	23	81	73	87	7		
ind inoment of the content of the co	109.4	21.8	116.5	21.1	126.1	19.7	1757.6	673.9	1453.8	601.8	1713.2	580.8	 	
THE TOO THE TOO THE		2183.7	1165.0	2112.8	1261.1	1974.7	17576.1	67387.7	14538.4	60183.1	17132.3	58079.6		
Mumber Run	1.0	2D	3D	4D	5D	GD	0.2	8D	9D	10D	11D	12D	#*************************************	

Table B-1
Listing of Computer Outputs (Cont.)

z×

Baseline Run - See Run 8D NOTES edeladordal. Dept of the order Treated Leave Lord Party Lord Par Algust mersord Ŋ %9 · Tenideo no isology z z z z z z z × × **z** z z z z z Learning () 100 100 100 100 100 100 100 100 100 100 100 100 100 Depreoriation Methon 100 100 001 100%100%100%100%100%100%100%100%100% 100%p_{oonpod} S_{L} SLSLSLSLSISL SL Angueno. Sapability / Pare Production production of state 100 200 Line Munber 20 Element Mumber Element Unit C3 23 Ø 0 8682.6 3677.2 2008.7 673.9 507.0 2154,2 8571.1 4455.6 2397.9 2356.2 896.3 819.4 1163,3 751,7 606.7 576.4 551,1 8571.1 17025.0 36619.5 33709,9 Program Cost, 8571,1 8911.3 9591,6 8571.1 9424.8 36771.5 40173,3 53780.5 101406.0 36619,5 43082.9 81935,9 15034.5 36404.0 110217.0 33709,9 67387.7 34050.1 34730,4 11632.7 57636.1 Summary Aun 14 **4**A 00 2 9 2 10 11 12 14

Table B-1
Listing of Computer Outputs (Cont.)

oppediation as for appropriate on a state of a state on			Changes 3 through 12			Baseline Run - See Run 2D										Baseline Run 8D+ Change 3	Baseline Run 8D+ Change 4			
Program Length,	1	က	H	- -		ເດ	-	~	n	Н	1	o.	Н	H	rc	H	H	ಬ	ವ	വ
TEL OOOL STORY	Ā	¥	7	Y	Y	Y	z	Z	z	Y	Y	Y	Y	Y	¥	¥	Y	Y	z	Z
\$ 20 TO SE AND T	Ā	×	Y	Y	Y	Y	Z	Z	Z	Y	Y	¥	Y	¥	Y	Y	×	Y	Z	Z
TO T	80	08	80	80	80	80	100	100	100	100	100	100	100	100	100	80	80	80	100	100
Thomas and the strong of the s		$_{ m ST}$	$_{ m ST}$	$_{ m SI}$	$_{ m S\Gamma}$	$_{ m SI}$	100%	100%	100%	100%	100%	100%	$_{ m SI}$	$_{ m ST}$	$_{ m SI}$	$_{ m S\Gamma}$	$_{ m S\Gamma}$	$_{ m SI}$	100%	100%
radinal production practice of the production practice of the production practice of the production production production production of the production of th	20	100	H	4	20	100		20	100		20	100	-	20	100	1	20	100	100	100
		20	20	20	20	20	50	20	20	20	20	20	20	20	20	20	20	20	20	20
Line Munber	-	Н	-		-	Н	1	-		П		-			Н	Η	-	, -		-
100 80.	2	87	83	83	27	7		!!	-	-	Н	Н	-		-	-	-	Н	8	Ø
Liement Unit	659.2	445.4	3919.1	1056.0	280.4	202.4	2005	56.7	21,8	951,2	0.09	25.1	288,8	26.9	19.2	288.8	23.0	13.7	635.2	569,1
Must Solver All Costs	13184.1	44539.0	3919.1	4223.9	5608.0	20237.0	α α	1134,8	2183.7	951.2	1200.3	2511.0	288.8	538.0	1922.3	288.8	460.5	1374.0	63519.0	56913.8
Summary Run	19	20	21	22	23	24	95	23	31	25A	29A	31A	33	37	39	41	43	44	49	20

Table B-1 Listing of Computer Outputs (Cont.)

Appropriete stand	Baseline Run 8D+ Change 5	Baseline Run 8D+ Change 6	Baseline Run 8D+ Change 7	Baseline Run 8D+ Change 8	Baseline Run 8D+ Change 9	Baseline Run 8D+ Change 10	Baseline Run 8D+ Change 11	Baseline Run 8D+ Change 12	Baseline Run 8D+ Change 13	Baseline Run 8D+ Change 14	Baseline Run 8D+ Change 15	Baseline Run 8D+ Change 16	Baseline Run 8D+ Change 17	Baseline Run 8D+ Change 18	Baseline Run 8D+ Change 19	Baseline Run 8D+ Change 20	Baseline Run 8D+ Changes 10 + 13	Baseline Run 8D+ Changes 14 + 16 + 20		Baseline Run 2D+ Change 3	Baseline Run 2D+ Change 4
Trogram Length	D.	2	2	2	2	ಬ	ശ	rg.	2	2	വ	വ	വ	വ	ව	2	2	22		2	<u>م</u>
Alferest on Sold Sold Sold Sold Sold Sold Sold Sold	z	z	z	z	Z	z	z	Z	z	z	z	z	z	z	z	z	z	z		z	Z
\$ \$20 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	z	Z	z	z	z	z	z	z	·Z	z	z	z	z	z	z	z	Z	z		z	z
A SOLVENING SOLV	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100		100	100
The hold of the total of the thought the the the the the the the the the t	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	$_{ m SI}$	SD	100%	100%	100%		100%	100%
Subord Allindede O Subord Allinded O Subo	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100		100	100
/ '00' / "01	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20		20	20
Element Munber	-	Н	-		-	-	-	-		-	-	-	H	-	Ħ	-				Н	н
Ir & P	7	7	7	7	7	2	7	7	2	7	7	7	2	7	23	7	7	87			-
Element Unit	605.8	8.709	638.2	594.6	6.899	643.0	586.4	662.5	859,5	839,2	747.5	719.5	658.4	435.4	471.3	8.669	817.5	928.2		20.5	18.2
Mary saci	60582.8	60782.3	63815,4	59461.2	66894,1	64301.2	58640.5	66249.4	85952,8	83917.1	74748.9	71954.3	65837.2	43536.7	47128.0	69983.6	81746.5	92818.8	·····	2045.6	1816.7
Summary Hun	51	52	53	54	55	99	57	58	59	09	61	62	63	64	65	99	29	89		69	70

												<u></u>								
Ases, Interest on Appropriate of Appropriation as and Appropriation as Appropriate of Appropriat	Baseline Run 2D + Change 5	Baseline Run 2D + Change 6	Baseline Run 2D + Change 7	+ Change	Baseline Run 2D + Change 9	Baseline Run 2D + Change 10			Baseline Run 2D + Change 13	Baseline Run 2D + Change 14	Baseline Run 2D + Change 15	Baseline Run 2D + Change 16	Baseline Run 2D + Change 17	Baseline Run 2D + Change 18	Baseline Run 2D + Change 19	Baseline Run 2D + Change 20	Changes 3 through 10 + 12	Changes 3 through 10 + 12	Changes 3 through 10 + 12	
Program Length	ည	5	5	ວ		ល			5	2	5	5	5	5	5	5	Н	1	2	
is to ledice of the second of	Z	z	Z	z	Z	Z			z	z	z	z	z	z	z	z	¥	Y	Y	
SET WYOOD TA	Z	z	z	Z	Z	z			Z	z	z	z	Z	Z	z	z	Y	Y	×	
Sunuarea T	100	100	100	100	100	100			100	100	100	100	100	100	100	100	80	80	80	
Method don	100%	100%	100%	100%	100%	100%			100%	100%	100%	100%	100%	$_{ m ST}$	SD	100%	$_{ m SC}$	$_{ m S\Gamma}$	$_{ m ST}$	
Toduction have being by toduced bostoliky by the body of the body	100	100	100	100	100	100			100	100	100	100	100	100	100	100	Н	20	100	
		20	20	20	20	20			20	20	20	20	20	20	20	20	20	20	20	
Line Mumber		H		Т	Н	Н	Applicable	cable	Н	H		Н		-	н		Н	-	П	
Elens.	Н	1	-	Н	-	H	Appli	Applicable			Н		F	-	Н	Н	1	-	Н	
Element Unit	20.2	19.7	20.6	18.6	20.6	21.2	11 Not	12 Not	28.5	28.9	25.3	23.1	21.6	16.0	16.8	22.9	119.7	9.7	7.0	
my cooi	2024.2	1972.8	2057.4	1862.8	2055.7	2118.8	Change	Change	2853.7	2889.2	2532.1	2307.7	2162.4	1604.5	1679.6	2290.2	119.7	194.0	701.0	
Man Astan Astan Ann	7.1	72	73	74	75	92			62	80	81	82	83	84	85	98	68	91	92	

Table B-1 Listing of Computer Outputs (Cont.)

Appropriate Sara Appropriate Sara Appropriate Sara Sara Sara Sara Sara Sara Sara Sar							Changes 3 through 12	Changes 3 through 12	Changes 3 through 12								Use Run 105 Data for Quantity Produced = 1 with 80% Learning Curve			Changes 3 through 10 + 12	
Program Lengh.	Н	αı	5	1	63	2	H	83	വ		Н	H	വ	Н	П	ວ	н	വ	1	H	, , , , , , , , , , , , , , , , , , , ,
A State of the sta	¥	¥	≯	¥		¥	¥	Y	Y		¥	Ā	¥	¥	7	X	×	Y	¥	¥	
**************************************	Y	¥	¥	¥	✓	Y	X	¥	Y		≻	7	¥	⊁	¥	¥	Y	Y	X	¥	
Samming Same	100	100	100	100	100	100	100	100	100		100	100	100	100	100	100	80	80	08	80	
Mehreciahlon Mehrodanon	100%	100%	100%	$_{ m SI}$	SL	$_{ m SI}$	$_{ m SI}$	$_{ m ST}$	SI		100%	100%	100%	SL	$_{ m SI}$	$_{ m ST}$	SL	SI	$_{ m ST}$	$_{ m SI}$	
Soducidon Rate Capability / Year Nothing Soduced Soduc	T	4	10	H	ぜ	10	П	4	10		Н	20	100	Н	20	100	20	100	Н	20	
		63	63	63	67	67	63	67	63	• • • •	20	20	20	20	20	20	20	20	20	20	
Line Munder	1	Н	Н	Н	 1	Н	Н	Н			က	က	က	က	က	က	က	က	က	က	
TI GI	2	2	7	67	73	67	23	87	87		-	-	-	н	-	Н	Н	-	Н	Н	
Element Unit	15700.9	4477.0	2350.8	3765.9	1601.2	1322.9	1606.3	720.3	630.5		1245.2	70.1	24.3	328.1	24.3	16.5	21.5	12.6	149.5	9,5	
Apr. Aun Cost, Aun Cost,	15700.9	17907.8	23508.0	3765.9	6404.9	13229.3	1606.3	2881.1	6305.2		1245.2	1402.5	2425.3	328.1	485.4	1654.1	429.1	1255.6	149.5	190.0	
The Tedrink Tedrink	93	94	95	96	97	86	66	100	101		102	103	104	105	106	107	109	110	111	112	

Shr opristed as and short shor	Changes 3 through 10 + 12							Use Run 117 Data for Quantity Produced = 1 with 80% Learning Curve		Changes 4 + 5 + 8	Changes 4 + 5 + 8	Changes 4 + 5 + 8	Changes 3 through 10 + 12	Changes 3 through 10 + 12	Changes 3 through 10 + 12	Changes 4 + 5 + 8	Changes 4 + 5 + 8	Changes 4 + 5 + 8	
Program Length,		1	7	22	П	H	5	Н	വ	1	1	5	1	1	ည	П	Н	5	
As to start on the start of the	¥	¥	¥	¥	Y	Y	¥	×	Y	Y	Y	Y	Y	X	Y	Y	Y	Y	
\$ 20 TO SE T	Y	Δ	¥	X	¥	¥	Y	X	Y	¥	Y	¥	Y	¥	Y	Y	Y	Y	
A Salving Solving Solv	80	100	100	100	100	100	100	80	80	80	80	80	80	80	80	80	80	80	
Mehlor echellon Mehlor hound belong		100%	100%	100%	$_{ m SF}$	$S\Gamma$	$S\Gamma$	$_{ m SF}$	$S\Gamma$	$_{ m SF}$	$_{ m SF}$	7S	$_{ m ST}$	$_{ m SF}$	$S\Gamma$	SI	$_{ m ST}$	SI	
Sapability/Yake Quantity Peroduction Production Production Production Production Production Production	100	₩	20	100	-	20	100	20	100	-	20	100	н	20	100	-	20	100	
		20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	
Line Number	က	က	က	က	က	က	က	က	က	က	က	က	က	က	က	F	_	-	
15 G.	1	73	2	23	23	87	7	63	7	7	7	23	7	7	7		2	23	
Element Unit	6.9	31497.9	1853.9	705.6	7926.0	675.3	506.0	596.8	394.8	5709.8	394.8	261.7	4156.2	287.4	210.5	6190.6	435.1	295.0	
The Seriam Cost,	691.8	31497.8	37078.6	70562.4	7926.0	13506.6	50603.1	11935.7	39484.1	5709.8	7895.9	26171.3	4156.2	5748.2	21047.5	6190.6	8701.1	29504.0	
Mundary Aunal	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	28	129	130	

Table B-1
Listing of Computer Outputs (Cont.)

z >

NOTES ∞ œ Changes 4 + 8 œ Changes 4 + 8 Changes 4 + 8 Changes 4 + Appropries of the property of 8 S 7 2 7 7 7 2 6 Interest on Asoperty Tax, \succ ⊱ \succ \succ \succ \succ Lear ning 100 100 100 100 100 80 80 80 100 001 100 100 100 100 80 Depreciation Action 100% 100% 100%100% 100% SLSLSLSL \mathbf{SL} SL $\mathbf{S}^{\mathbf{I}}$ Produced Angueno. Production Rate O 20 100 20 10 10 10 10 2 c/a Ø Ø 0 0.1 2 20 20 5020 Line Munber Tolmon Mumber က က Element Unit 1248.3 209.8 15.7 9.6 246.3 15.4 9.5 987.6 278.4 143.4 298.7 111.5 82.6 216.7 82.8 343.2 171.2 Argeram Cost 1113.6 209.8 246.3 952.2 987.6 1433.7 1248.3 955.9298.7 446.0 216.7 331.3636.91372.8 1711.8 314.1 308.1 826.1Sunnay Flun 132 139 142 138 140 131 133 134 135 136 137 141 143 144 146 147 148

Table B-1 Listing of Computer Outputs (Cont.)

Spropriste start and shortest st				Changes 4 + 8	Changes 4 + 8	Changes 4 + 8	Changes 4 + 5 + 8	Changes 4 + 5 + 8	Changes 4 + 5 + 8							Changes 4 + 5 + 8	Changes 4 + 5 + 8	Changes 4 + 5 + 8	
Program Length.	-	73	വ	H	23	വ	Н	63	က	_	7	2		7	D	1	2	ည	
no redides	7	Y	Y	¥	¥	X	Ā	Y	¥	Þ	. X	Δ	Y	Y	¥	Y	Y	Y	
\$\$\frac{\lambda \text{T} \lambda T	×	Y	¥	¥	Ā	Y	Y	Y	Ā	>	· >	¥	Y	¥	7	¥	¥	Y	
Surve, S.	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
Tegy to the thought of the	$_{ m ST}$	$_{ m ST}$	SL	$_{ m ST}$	$_{ m SF}$	$_{ m SI}$	SL	$_{ m SF}$	SL	1000	100%	100%	$_{ m SF}$	$_{ m SI}$	$_{ m SF}$	$S\Gamma$	$_{ m ST}$	7 S	
to alothory yake of the order o	Ţ	4	10	Н	4	10	-	4	10	-	4	10	н	4	10	-	4	10	
		7		2	23	2	87	7	73	٥	1 (2)	23	87	2	23	2	2	27	
Line Mumber	3	က	က	အ	က	က	H	T		<u>-</u>	. m	က	က	က	က	က	က	က	
Elena.	H	-	H	Н	Н		7	2	2	¢		7	2	23	87	2	23	73	
Liemont Unit	331,3	123.4	94.1	248.2	95,9	76.4	2662.6	1133.5	951.8	15690	4426.2	2305.8	3765.8	1598.2	1328.1	2689.2	1146.4	969.2	
AN OSTAN COSE,	331.3	493.8	940.6	248.2	383.7	763.6	2662.6	4533.9	9517.8	1000	17704.6	23057.8	3765.8	6392.8	13280.9	2689.2	4585.5	9691,6	
Summary Run	149	150	151	152	153	154	155	156	157	G Li	159	160	191	162	163	164	165	166	

Table B-1
Listing of Computer Outputs (Cont.)

Z×

Baseline Run – See Run 10D for % Only Baseline Run - See Run 11D for % Only Baseline Run - See Run 12D for % Only Baseline Run - See Run 8D for % Only Baseline Run - See Run 9D for % Only Baseline Run - See Run 7D for % Only NOTES See Run 168 for % Only See Run 169 for % Only See Run 167 for % Only Appropriate for Appropriate fo ß Ŋ 2 Ŋ വവ Ŋ S വ Interest on Capital, 6% AST OOOT OSA \succ \mathbf{z} Z ZZZ z z zz z z \succ z \succ z z Z z z zZZZ ZZZ Curre Learning L 100 100 001 80 80 100 80 100 80 80 80 8 Depreciation Method adon 80 100%100%100%100% 100%100%100%100%100%100%100%100%100% 100% Paonposta Angueno. Sabalita Adulta Care Production page 100 100 100 10 100 100 100 10 100 10 100 100 Line Munber 20 20 20 20 0 01 20 20 20 20 20 20 20 20Element Mumber Ø Ø က Ø Ø Ø က Ø Element Unit Ø 0 Ø Ø 2 Ø Ø 2 Ø Ø Ø Ø 3313.2 7932,1 673.9 542.9 601.8 478.4 580,8 469.6 30924.9 542.9478.4 469.6 1757.6 1453.9 1713.2 isoo wersen 30924.9 14538,5 17132.3 58079,6 33131,8 47838.6 46960.5 31728.4 54290,5 47838,6 46960,5 17576.1 67387.7 54296.5 60183.1 Summary Run 172 173 174 175177 179 180 182 168 169170 171 167

Table B-1
Listing of Computer Outputs (Cont.)

								 										 		\neg
NOTES																				
Por SE IN STEING																				
Ago lest on Lengest on Les est on Les est on Length of L	,	ည	H	-	-	Н	ιΩ	 ,	H		-	5	-	П	П	П	വ	1	7	5
As of the state of	Y	¥	Y	Y	X	Y	¥	¥	Y	¥	¥	Y	Y	Y	Y	Y	X	Y	Y	Y
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Y	⊁	¥	⊁	¥	×	Y	Y	Y	¥	⋋	7	Y	¥	Y	Y	¥	 ×	Y	Y
Curving Surving	80	80	100	100	100	100	100	80	80	80	80	80	100	100	100	100	100	100	100	100
Method boots on	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Toduchion Rate of the poly of	20	100	-	4	10	20	100	 ⊣	4	10	20	100	—	4	10	20	100	1	4	10
		20	20	20	20	20	20	 20	20	20	20	20	20	20	20	20	20	 73	23	2
Line Mumber Arodues	2	73	7	2	7	2	77	 2	2	62	2	2	23	23	2	87	87	73	2	2
[A]	2	87	2	87	23	2	73	 -	 -		₩	-	-	н	-		1	83	87	83
Cost Kg Unit	33.3	600.7	30924.9	7971.4	3380.7	1850.9	724.2	 1050.7	269.9	113.0	60.4	20.5	1050.7	271.3	115.4	63,4	24.8	 12589.1	3620.8	1920.4
May Stain Cost,	35265.7	60073.9	30924.9	31885,7	33807.2	37009.8	72418.4	1050.7	1079.6	1130,3	1207.6	2049.2	1050,7	1085,1	1153,9	1268.7	2481.8	12589.1	14483.0	19203.8
AUTH AND AND FOUR	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	 200	201	202

Table B-1
Listing of Computer Outputs (Cont.)

NOTES Topical Length.

Topicolation and Appropriate and Appropriation and Appropriation and Appropriate as a series of Appropriate as a Ø 10 Interest on Capitals on Aroporti Araboli (1985) ×× \succ Learning Survey & 100 Depreciation Method 100%100%Paonpoid AMUENO! eden nothoubord see y Allideded on the see 10 4 Line Munber 01 01 01 Element Number 01 01 01 Element Unit 301.9 154.3 Program Cost 1207,6 1542,5 Sunnay Aun 203 204 205

